Simulation Strategy of Membrane Computing to Characterize the Structure and Non-deterministic Behavior of Biological Systems: A Case Study with Ligand-Receptor Network of Protein TGF-β

Author(s):  
Muniyandi Ravie Chandren ◽  
Mohd. Zin Abdullah
2014 ◽  
Vol 5 (2) ◽  
pp. 137-143 ◽  
Author(s):  
Ravie Chandren Muniyandi ◽  
Abdullah Mohd Zin

2020 ◽  
pp. 1-33 ◽  
Author(s):  
Devesh Bhasin ◽  
Daniel A. McAdams ◽  
Astrid Layton

Abstract In this work, we show that bioinspired function-sharing can be effectively applied in engineering design by abstracting and emulating the product architecture of biological systems that exhibit function-sharing. Systems that leverage function-sharing enable multiple functions to be performed by a single structure. Billions of years of evolution has led to the development of function-sharing adaptations in biological systems. Currently, engineers leverage biological function-sharing by imitating serendipitously encountered biological structures. As a result, utilizing bioinspired function-sharing remains limited to some specific engineering problems. To overcome this limitation, we propose the Function-Behavior-Structure tree as a tool to simultaneously abstract both biological adaptations and the product architecture of biological systems. The tool uses information from an existing bioinspired design abstraction tool and an existing product architecture representation tool. A case study demonstrates the tool's ability to abstract the product architectural characteristics of function-sharing biological systems. The abstracted product architectural characteristics are then shown to facilitate problem-driven bioinspiration of function-sharing. The availability of a problem-driven approach may reduce the need to imitate biological structures to leverage biological function-sharing in engineering design. This work is a step forward in analyzing biological product architectures to inspire engineering design.


Author(s):  
Miguel A. Gutiérrez-Naranjo ◽  
Mario J. Pérez-Jiménez

Local search is currently one of the most used methods for finding solutions in real-life problems. It is usually considered when the research is interested in the final solution of the problem instead of the how the solution is reached. In this paper, the authors present an implementation of local search with Membrane Computing techniques applied to the N-queens problem as a case study. A CLIPS program inspired in the Membrane Computing design has been implemented and several experiments have been performed. The obtained results show better average times than those obtained with other Membrane Computing implementations that solve the N-queens problem.


2021 ◽  
Author(s):  
Devesh Bhasin ◽  
David Staack ◽  
Daniel A. McAdams

Abstract This work analyzes the role of bioinspired product architecture in facilitating the development of robust engineering systems. Existing studies on bioinspired product architecture largely focus on inspiring biology-like function-sharing in engineering design. This work shows that the guidelines for bioinspired product architecture, originally developed for bioinspiration of function-sharing, may induce robustness to random failures in engineered systems. To quantify such an improvement, this study utilizes Functional Modeling to derive modular equivalents of biological systems. The application of the bioinspired product architecture guidelines is then modeled as a transition from the modular product architecture of the modular equivalents to the actual product architecture of the biological systems. The robustness of the systems to random failures is analyzed after the application of each guideline by modeling the systems as directed networks. A singular robustness metric is then introduced to quantify the degradation in the expected functionality of systems upon increasing severity of random disruptions. Our results show that a system with bioinspired product architecture exhibits a gradual degradation in expected functionality upon increasing the number of failed modules as compared to an equivalent system with a one-to-one mapping of functions to modules. The findings are validated by designing and analyzing a COVID-19 breathalyzer as a case study.


Sign in / Sign up

Export Citation Format

Share Document