Cost-Effective Multicast Routings in Wireless Mesh Networks

Author(s):  
Younho Jung ◽  
Su-il Choi ◽  
Intae Hwang ◽  
Taejin Jung ◽  
Bae Ho Lee ◽  
...  
Author(s):  
Lungisani Ndlovu ◽  
◽  
Okuthe P. Kogeda ◽  
Manoj Lall

Wireless mesh networks (WMNs) are the only cost-effective networks that support seamless connectivity, wide area network (WAN) coverage, and mobility features. However, the rapid increase in the number of users on these networks has brought an upsurge in competition for available resources and services. Consequently, factors such as link congestion, data collisions, link interferences, etc. are likely to occur during service discovery on these networks. This further degrades their quality of service (QoS). Therefore, the quick and timely discovery of these services becomes an essential parameter in optimizing the performance of service discovery on WMNs. In this paper, we present the design and implementation of an enhanced service discovery model that solves the performance bottleneck incurred by service discovery on WMNs. The proposed model integrates the particle swarm optimization (PSO) and ant colony optimization (ACO) algorithms to improve QoS. We use the PSO algorithm to assign different priorities to services on the network. On the other hand, we use the ACO algorithm to effectively establish the most cost-effective path whenever each transmitter has to be searched to identify whether it possesses the requested service(s). Furthermore, we design and implement the link congestion reduction (LCR) algorithm to define the number of service receivers to be granted access to services simultaneously. We simulate, test, and evaluate the proposed model in Network Simulator 2 (NS2), against ant colony-based multi constraints, QoS-aware service selection (QSS), and FLEXIble Mesh Service Discovery (FLEXI-MSD) models. The results show an average service discovery throughput of 80%, service availability of 96%, service discovery delay of 1.8 s, and success probability of service selection of 89%.


2019 ◽  
Vol 27 (6) ◽  
pp. 2354-2362 ◽  
Author(s):  
Qian Chen ◽  
Xiao Juan Zhang ◽  
Wei Lih Lim ◽  
Yuen Sam Kwok ◽  
Sumei Sun

2021 ◽  
Author(s):  
Behrang Barekatain ◽  
Kaamran Raahemifar ◽  
Alfonso Ariza Quintana ◽  
Alicia Triviño Cabrera

Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes.


2021 ◽  
Author(s):  
Behrang Barekatain ◽  
Kaamran Raahemifar ◽  
Alfonso Ariza Quintana ◽  
Alicia Triviño Cabrera

Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes.


2014 ◽  
Vol 13 (6) ◽  
pp. 4543-4548
Author(s):  
Preet Pavneet Kaur Sandhu ◽  
Prof. Jatinder Singh Saini

This paper is a review on QoS issue of Wireless mesh networks. QoS comes up with a great collection of networking technologies and procedures that guarantees the capability of a network to deliver with predictable consequences. WMNs have emerged as a flexible, reliable and cost effective way of providing broadband internet access over wide areas through multi hop communication. This paper has reviewed different routing protocols used in the WMNs. The overall objective of this paper is to explore the various short comings of the routing protocols of WMN.


2016 ◽  
Vol 19 (3) ◽  
pp. 1599-1605 ◽  
Author(s):  
Jaehyung Park ◽  
Younho Jung ◽  
Yong-Min Kim

Sign in / Sign up

Export Citation Format

Share Document