routing protocols
Recently Published Documents





2022 ◽  
Vol 22 (1) ◽  
pp. 1-27
Gaurav Singal ◽  
Vijay Laxmi ◽  
Manoj Singh Gaur ◽  
D. Vijay Rao ◽  
Riti Kushwaha ◽  

Multicast communication plays a pivotal role in Edge based Mobile Ad hoc Networks (MANETs). MANETs can provide low-cost self-configuring devices for multimedia data communication that can be used in military battlefield, disaster management, connected living, and public safety networks. A Multicast communication should increase the network performance by decreasing the bandwidth consumption, battery power, and routing overhead. In recent years, a number of multicast routing protocols (MRPs) have been proposed to resolve above listed challenges. Some of them are used for dynamic establishment of reliable route for multimedia data communication. This article provides a detailed survey of the merits and demerits of the recently developed techniques. An ample study of various Quality of Service (QoS) techniques and enhancement is also presented. Later, mesh topology-based MRPs are classified according to enhancement in routing mechanism and QoS modification. This article covers the most recent, robust, and reliable QoS-aware mesh based MRPs, classified on the basis of their operational features, and pros and cons. Finally, a comparative study has been presented on the basis of their performance parameters on the proposed protocols.

Raed Taleb Al-Zubi ◽  
Abdulraheem Ahmed Kreishan ◽  
Mohammad Qasem Alawad ◽  
Khalid Ahmad Darabkh

<span>In recent years, wireless sensor networks (WSNs) have been considered one of the important topics for researchers due to their wide applications in our life. Several researches have been conducted to improve WSNs performance and solve their issues. One of these issues is the energy limitation in WSNs since the source of energy in most WSNs is the battery. Accordingly, various protocols and techniques have been proposed with the intention of reducing power consumption of WSNs and lengthen their lifetime. Cluster-oriented routing protocols are one of the most effective categories of these protocols. In this article, we consider a major issue affecting the performance of this category of protocols, which we call the intra/inter-cluster event-reporting problem (IICERP). We demonstrate that IICERP severely reduces the performance of a cluster-oriented routing protocol, so we suggest an effective Solution for IICERP (SIICERP). To assess SIICERP’s performance, comprehensive simulations were performed to demonstrate the performance of several cluster-oriented protocols without and with SIICERP. Simulation results revealed that SIICERP substantially increases the performance of cluster-oriented routing protocols.</span>

2022 ◽  
Vol 14 (1) ◽  
pp. 28
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Jiangdong Lu ◽  
Dongfang Li ◽  
Penglong Wang ◽  
Fen Zheng ◽  
Meng Wang

Today, with increasing information technology such as the Internet of Things (IoT) in human life, interconnection and routing protocols need to find optimal solution for safe data transformation with various smart devices. Therefore, it is necessary to provide an enhanced solution to address routing issues with respect to new interconnection methodologies such as the 6LoWPAN protocol. The artificial neural network (ANN) is based on the structure of intelligent systems as a branch of machine interference, has shown magnificent results in previous studies to optimize security-aware routing protocols. In addition, IoT devices generate large amounts of data with variety and accuracy. Therefore, higher performance and better data handling can be achieved when this technology incorporates data for sending and receiving nodes in the environment. Therefore, this study presents a security-aware routing mechanism for IoT technologies. In addition, a comparative analysis of the relationship between previous approaches discusses with quality of service (QoS) factors such as throughput and accuracy for improving routing mechanism. Experimental results show that the use of time-division multiple access (TDMA) method to schedule the sending and receiving of data and the use of the 6LoWPAN protocol when routing the sending and receiving of data can carry out attacks with high accuracy.

Shiva Kumar V. ◽  
Rajashree V. Biradar ◽  
V. C. Patil

the technology of wireless sensor-actuator networks (WSANs) is widely employed in the applications of IoT due to its wireless nature and it does not involve any wired structure. The wireless systems that are battery-driven can easily reconfigure the existing devices and sensors efficiently in the manufacturing units without employing any cable for power operation as well as for communication. The wireless sensor-actuator networks that are based on IEEE 802.15.4 consumes significantly less power. These networks are designed and built cost-effectively by considering the capacity of battery and expense so that they can be employed for many applications. The application of a typical wireless Autonomous Scheduling and Distributed Graph Routing (DDSR) has illustrated the reliability of employing its basic approaches for almost ten years and it consists of the accurate plot for routing and time-slotted channel hopping therefore ensuring accurate low-power wireless communication in the processing site. Officially declared by the controversial statements associated with the government of Greek experiences fourth industrialization. There is a huge requirement for sensor nodes link via WSAN in the industrial site. Also, reduced computational complexity is one of the drawbacks faced by the existing standards of WSAN which is caused because of their highly centralized traffic management systems and thereby significantly improves the consistency and accessibility of network operations at the expense of optimization. This research work enables the study of efficient Wireless DGR network management and also introduces an alternative for DDSR by enabling the sensor nodes to determine their data traffic routes for the transmission of data. When compared to the above two physical routing protocols, the proposed technique can drastically improve the performance of a network, throughput, and energy consumption under various aspects. Energy harvesting (EH) plays a significant role in the implementation of large IoT devices. The requirement for subsequent employment of power sources is eliminated by The efficient approach of Energy Harvesting and thereby providing a relatively close- perpetual working environment for the network. The structural concept of routing protocols that are designed for the IoT applications which are based on the wireless sensor has been transformed into "energy-harvesting-aware" from the concept of "energy-aware" because of the development in the Energy harvesting techniques. The main objective of the research work is to propose a routing protocol that is energy-harvesting-aware for the various network of IoT in case of acoustic sources of energy. A novel algorithm for routing called Autonomous Scheduling and Distributed Graph Routing (DDSR) has been developed and significantly improved by incorporating a new “energy back-off” factor. The proposed algorithm when integrated with various techniques of energy harvesting enhances the longevity of nodes, quality of service of a network under increased differential traffic, and factors influencing the accessibility of energy. The research work analyses the performance of the system for various constraints of energy harvesting. When compared to previous routing protocols the proposed algorithm achieves very good energy efficiency in the network of distributed IoT by fulfilling the requirements of QoS.

2022 ◽  
Vol 24 (1) ◽  
pp. 244-252
Mrs.L. D. Sujithra Devi ◽  
Mrs. A. Praveena ◽  
Mrs. B. Reena ◽  
Mrs. G. Anandhi ◽  

A Mobile Ad Hoc Network (MANETs) connects mobile nodes without any base station. These nodes in the network can change the topology dynamically and transfer the data among themselves. The nodes in the MANET are categorized based on the resource factors like memory, computation, and power levels. The dynamic change in route makes the connection of the destination node more complex. Sometimes, it results in link failure, and hence the primary route is failed, which means an alternative route is required to transmit the packets. It required multiple paths from the source node to destination node with a stable path connecting the source node. This issue makes MANET routing a crucial task. To address these problems, multipath routing in MANET is discussed in this paper. Multipath routing provides various paths for a single source node to a single destination node. It is more important to consider load balancing and fault tolerance when establishing the multipath routing mechanism. This paper describes the various type of challenges along with their respective multipath routing protocols in MANETs.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 415
Neelakandan Subramani ◽  
Prakash Mohan ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi ◽  
Osamah Ibrahim Khalaf

In recent years, the underwater wireless sensor network (UWSN) has received a significant interest among research communities for several applications, such as disaster management, water quality prediction, environmental observance, underwater navigation, etc. The UWSN comprises a massive number of sensors placed in rivers and oceans for observing the underwater environment. However, the underwater sensors are restricted to energy and it is tedious to recharge/replace batteries, resulting in energy efficiency being a major challenge. Clustering and multi-hop routing protocols are considered energy-efficient solutions for UWSN. However, the cluster-based routing protocols for traditional wireless networks could not be feasible for UWSN owing to the underwater current, low bandwidth, high water pressure, propagation delay, and error probability. To resolve these issues and achieve energy efficiency in UWSN, this study focuses on designing the metaheuristics-based clustering with a routing protocol for UWSN, named MCR-UWSN. The goal of the MCR-UWSN technique is to elect an efficient set of cluster heads (CHs) and route to destination. The MCR-UWSN technique involves the designing of cultural emperor penguin optimizer-based clustering (CEPOC) techniques to construct clusters. Besides, the multi-hop routing technique, alongside the grasshopper optimization (MHR-GOA) technique, is derived using multiple input parameters. The performance of the MCR-UWSN technique was validated, and the results are inspected in terms of different measures. The experimental results highlighted an enhanced performance of the MCR-UWSN technique over the recent state-of-art techniques.

2022 ◽  
Vol 40 (1/2/3) ◽  
pp. 1
S. Vimal ◽  
Mohammad Shabaz ◽  
Gaurav Dhiman ◽  
Sparsh Sharma ◽  
Mohd. Naseem ◽  

2022 ◽  
Vol 6 (1) ◽  
pp. 31-42
Zainab Alansari ◽  
Mohammed Siddique ◽  
Mohammed Waleed Ashour

Wireless sensor networks (WSNs) are set of sensor nodes to monitor and detect transmitted data to the sink. WSNs face significant challenges in terms of node energy availability, which may impact network sustainability. As a result, developing protocols and algorithms that make the best use of limited resources, particularly energy resources, is critical issues for designing WSNs. Routing algorithms, for example, are unique algorithms as they have a direct and effective relationship with lifetime of network and energy. The available routing protocols employ single-hop data transmission to the sink and clustering per round. In this paper, a Fuzzy Clustering and Energy Efficient Routing Protocol (FCERP) that lower the WSNs energy consuming and increase the lifetime of network is proposed. FCERP introduces a new cluster-based fuzzy routing protocol capable of utilizing clustering and multiple hop routing features concurrently using a threshold limit. A novel aspect of this research is that it avoids clustering per round while considering using fixed threshold and adapts multi-hop routing by predicting the best intermediary node for clustering and the sink. Some Fuzzy factors such as residual energy, neighbors amount, and distance to sink considered when deciding which intermediary node to use.

Sign in / Sign up

Export Citation Format

Share Document