Recurrent Neural Network-Based Control for Wastewater Treatment Process

Author(s):  
Junfei Qiao ◽  
Xiaoqi Huang ◽  
Honggui Han
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zehua Huang ◽  
Renren Wu ◽  
XiaoHui Yi ◽  
Hongbin Liu ◽  
Jiannan Cai ◽  
...  

The anaerobic treatment process is a complicated multivariable system that is nonlinear and time varying. Moreover, biogas production rates are an important indicator for reflecting operational performance of the anaerobic treatment system. In this work, a novel model fuzzy wavelet neural network based on the genetic algorithm (GA-FWNN) that combines the advantages of the genetic algorithm, fuzzy logic, neural network, and wavelet transform was established for prediction of effluent quality and biogas production rates in a full-scale anaerobic wastewater treatment process. Moreover, the dataset was preprocessed via a self-adapted fuzzy c-means clustering before training the network and a hybrid algorithm for acquiring the optimal parameters of the multiscale GA-FWNN for improving the network precision. The analysis results indicate that the FWNN with the optimal algorithm had a high speed of convergence and good quality of prediction, and the FWNN model was more advantageous than the traditional intelligent coupling models (NN, WNN, and FNN) in prediction accuracy and robustness. The determination coefficients R2 of the FWNN models for predicting both the effluent quality and biogas production rates were over 0.95. The proposed model can be used for analyzing both biogas (methane) production rates and effluent quality over the operational time period, which plays an important role in saving energy and eliminating pollutant discharge in the wastewater treatment system.


2018 ◽  
Vol 21 (3) ◽  
pp. 1270-1280 ◽  
Author(s):  
Jun‐Fei Qiao ◽  
Gai‐Tang Han ◽  
Hong‐Gui Han ◽  
Cui‐Li Yang ◽  
Wei Li

2017 ◽  
Vol 76 (12) ◽  
pp. 3181-3189 ◽  
Author(s):  
Jiayan Zhang ◽  
Cuicui Du ◽  
Xugang Feng

Abstract In this paper, the measurement of biochemical oxygen demand (BOD) in a wastewater treatment process is analyzed and an intelligent integrated prediction method based on case-based reasoning (CBR) is proposed in order to overcome difficulties. Due to the fact that there are many factors that influence the accuracy of the prediction model, the radial basis function, which is a neural network with a 3 layer feedforward network, is employed to reduce the dimension of input values. Under these circumstances, a back propagation neural network combining with a nearest neighbor retrieval strategy is adopted to match case. Then, the measurement of BOD in wastewater treatment process is analyzed. Finally, the validity of the improved CBR in sewage treatment is demonstrated by using numerical results.


Sign in / Sign up

Export Citation Format

Share Document