back propagation
Recently Published Documents


TOTAL DOCUMENTS

5430
(FIVE YEARS 2323)

H-INDEX

74
(FIVE YEARS 24)

Author(s):  
Rajkumari Malemnganbi ◽  
Benjamin A. Shimray

There is a need for non-renewable energy sources in generation of power for almost every domestic and commercial purposes. This source of energy helps in the development of a country. Because of the increasing usage of the fossil fuels and depletion of these resources, our focus has been shifted towards the renewable sources of energy like solar, water and wind. Therefore, in the present scenario, the usage of renewable sources has been increasing rapidly. Selection of a solar power plant (SPP) requires environmental factor, local terrain, and local weather issues. Thus, a large amount of investment is required for installation. Multi-criteria decision making (MCDM) is a method that identifies one in choosing the best sites among the other proposed options. This paper gives a detailed study of optimal ranking of SPP site using analytical hierarchy process (AHP), multiple layer perceptron (MLP) neural network trained with back propagation (BP) algorithm and genetic algorithm (GA). Three SPP sites of India were considered and various important criteria like local weather, geographical location, and environmental factors are included in our study as SPP site selection is a multi-criteria problem. A precise comparison of these three methods is listed in this paper.


2022 ◽  
Vol 34 (4) ◽  
pp. 1-14
Author(s):  
Qiuli Qin ◽  
Xing Yang ◽  
Runtong Zhang ◽  
Manlu Liu ◽  
Yuhan Ma

To reduce the incidence of cerebrovascular disease and mortality, identifying the risks of cerebrovascular disease in advance and taking certain preventive measures are significant. This article was aimed to investigate the risk factors of cerebrovascular disease (CVD) in the primary prevention, and to build an early warning model based on the existing technology. The authors use the information entropy algorithm of rough set theory to establish the index system suitable for early warning model. Then, using the limited Boltzmann machine and direction propagation algorithm, the depth trust network is established by building and stacking RBM, and the back propagation is used to fine-tune the parameters of the network at the top layer. Compared with the LM-BP early-warning model, the deep confidence network model is more effective than traditional artificial neural network, which can help to identify the risk of cerebrovascular disease in advance and promote the primary prevention.


2022 ◽  
Vol 237 ◽  
pp. 111852
Author(s):  
Yanqing Cui ◽  
Haifeng Liu ◽  
Qianlong Wang ◽  
Zunqing Zheng ◽  
Hu Wang ◽  
...  

2022 ◽  
Vol 11 (02) ◽  
pp. 41-44
Author(s):  
Hamed Nazerian ◽  
Adel Shirazy ◽  
Aref Shirazi ◽  
Ardeshir Hezarkhani

Artificial neural network (ANN) is one of the practical methods for prediction in various sciences. In this study, which was carried out on Glass and Crystal Factory in Isfahan, the amount of silica purification used in industry has been investigated according to its analyses. In this discussion, according to the artificial neural network algorithm back propagation neural network (BPNN), the amount of silica (SiO2) was predicted according to rock main oxides in chemical analysis. These studies can be used as a criterion for estimating the purity for use in the factory due to the high accuracy obtained.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Liu Qiang ◽  
Zhao Zhongwei

The research on the relationship between human resource management activities and performance is an important topic of enterprise human resource management research. There are some errors between the relationship between human resource management activities and performance and the real situation, so it is impossible to accurately predict the performance fluctuation. Therefore, the relationship model between human resource management activities and performance based on the LMBP algorithm is constructed. Using the Levenberg–Marquardt (LM) algorithm and BP (back-propagation) neural network algorithm to establish a new LMBP algorithm, control the convergence of the new algorithm, optimize the accuracy of the algorithm, and then apply the LMBP algorithm to predict the risk of performance fluctuation under human resource management activities of enterprises, the indicators of human resource management activities of enterprises are determined, to complete the mining of enterprise performance data, the grey correlation analysis is combined, and the relationship model between human resource management activities and performance is built. The experimental samples are selected from CSMAR database, and the simulation experiment is designed. Using different algorithms to forecast the fluctuation of enterprise performance, the experimental results show that the LMBP algorithm can more accurately reflect the relationship between enterprise HRM and performance.


2022 ◽  
Vol 14 (2) ◽  
pp. 811
Author(s):  
Muhammad Yasir Ali Khan ◽  
Haoming Liu ◽  
Salman Habib ◽  
Danish Khan ◽  
Xiaoling Yuan

In this work, a non-isolated DC–DC converter is presented that combines a voltage doubler circuit and switch inductor cell with the single ended primary inductor converter to achieve a high voltage gain at a low duty cycle and with reduced component count. The converter utilizes a single switch that makes its control very simple. The voltage stress across the semiconductor components is less than the output voltage, which makes it possible to use the diodes with reduced voltage rating and a switch with low turn-on resistance. In particular, performance principle of the proposed converter along with the steady state analysis such as voltage gain, voltage stress on semiconductor components, and design of inductors and capacitors, etc., are carried out and discussed in detail. Moreover, to regulate a constant voltage at a DC-link capacitor, back propagation algorithm-based adaptive control schemes are designed. These adaptive schemes enhance the system performance by dynamically updating the control law parameters in case of PV intermittency. Furthermore, a proportional resonant controller based on Naslin polynomial method is designed for the current control loop. The method describes a systematic procedure to calculate proportional gain, resonant gain, and all the coefficients for the resonant path. Finally, the proposed system is simulated in MATLAB and Simulink software to validate the analytical and theoretical concepts along with the efficacy of the proposed model.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 511
Author(s):  
Adeniyi Kehinde Onaolapo ◽  
Rudiren Pillay Carpanen ◽  
David George Dorrell ◽  
Evans Eshiemogie Ojo

The reliability of the power supply depends on the reliability of the structure of the grid. Grid networks are exposed to varying weather events, which makes them prone to faults. There is a growing concern that climate change will lead to increasing numbers and severity of weather events, which will adversely affect grid reliability and electricity supply. Predictive models of electricity reliability have been used which utilize computational intelligence techniques. These techniques have not been adequately explored in forecasting problems related to electricity outages due to weather factors. A model for predicting electricity outages caused by weather events is presented in this study. This uses the back-propagation algorithm as related to the concept of artificial neural networks (ANNs). The performance of the ANN model is evaluated using real-life data sets from Pietermaritzburg, South Africa, and compared with some conventional models. These are the exponential smoothing (ES) and multiple linear regression (MLR) models. The results obtained from the ANN model are found to be satisfactory when compared to those obtained from MLR and ES. The results demonstrate that artificial neural networks are robust and can be used to predict electricity outages with regards to faults caused by severe weather conditions.


Author(s):  
P. Vijayalakshmi ◽  
K. Muthumanickam ◽  
G. Karthik ◽  
S. Sakthivel

Adenomyosis is an abnormality in the uterine wall of women that adversely affects their normal life style. If not treated properly, it may lead to severe health issues. The symptoms of adenomyosis are identified from MRI images. It is a gynaecological disease that may lead to infertility. The presence of red dots in the uterus is the major symptom of adenomyosis. The difference in the extent of these red dots extracted from MRI images shows how significant the deviation from normality is. Thus, we proposed an entroxon-based bio-inspired intelligent water drop back-propagation neural network (BIWDNN) model to discover the probability of infertility being caused by adenomyosis and endometriosis. First, vital features from the images are extracted and segmented, and then they are classified using the fuzzy C-means clustering algorithm. The extracted features are then attributed and compared with a normal person’s extracted attributes. The proposed BIWDNN model is evaluated using training and testing datasets and the predictions are estimated using the testing dataset. The proposed model produces an improved diagnostic precision rate on infertility.


2022 ◽  
Vol 12 (2) ◽  
pp. 682
Author(s):  
Yuzhan Wu ◽  
Chenlong Li ◽  
Changshun Yuan ◽  
Meng Li ◽  
Hao Li

Tracking control of Small Unmanned Ground Vehicles (SUGVs) is easily affected by the nonlinearity and time-varying characteristics. An improved predictive control scheme based on the multi-dimensional Taylor network (MTN) is proposed for tracking control of SUGVs. First, a MTN model is used as a predictive model to construct a SUGV model and back propagation (BP) is taken as its learning algorithm. Second, the predictive control law is designed and the traditional objective function is improved to obtain a predictive objective function with a differential term. The optimal control quantity is given in real time through iterative optimization. Meanwhile, the stability of the closed-loop system is proved by the Lyapunov stability theorem. Finally, a tracking control experiment on the SUGV model is used to verify the effectiveness of the proposed scheme. For comparison, traditional MTN and Radial Basis Function (RBF) predictive control schemes are introduced. Moreover, a noise disturbance is considered. Experimental results show that the proposed scheme is effective, which ensures that the vehicle can quickly and accurately track the desired yaw velocity signal with good real-time, robustness, and convergence performance, and is superior to other comparison schemes.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Ho Nguyen Anh Tuan ◽  
Nguyen Dao Xuan Hai ◽  
Nguyen Truong Thinh

In rhinoplasty, it is necessary to consider the correlation between the anthropometric indicators of the nasal bone, so that it prevents surgical complications and enhances the patient’s satisfaction. The penetrating form of high-energy electromagnetic radiation is highly impacted on human health, which has often raised concerns of alternative method for facial analysis. The critical stage to assess nasal morphology is the nasal analysis on its anthropology that is highly reliant on the understanding of the structural features of the nasal radix. For example, the shape and size of nasal bone features, skin thickness, and also body factors aggregated from different facial anthropology values. In medical diagnosis, however, the morphology of the nasal bone is determined manually and significantly relies on the clinician’s expertise. Furthermore, the evaluation anthropological keypoint of the nasal bone is nonrepeatable and laborious, also finding widely differ and intralaboratory variability in the results because of facial soft tissue and equipment defects. In order to overcome these problems, we propose specialized convolutional neural network (CNN) architecture to accurately predict nasal measurement based on digital 2D photogrammetry. To boost performance and efficacy, it is deliberately constructed with many layers and different filter sizes, with less filters and optimizing parameters. Through its result, the back-propagation neural network (BPNN) indicated the correlation between differences in human body factors mentioned are height, weight known as body mass index (BMI), age, gender, and the nasal bone dimension of the participant. With full of parameters could the nasal morphology be diagnostic continuously. The model’s performance is evaluated on various newest architecture models such as DenseNet, ConvNet, Inception, VGG, and MobileNet. Experiments were directly conducted on different facials. The results show the proposed architecture worked well in terms of nasal properties achieved which utilize four statistical criteria named mean average precision (mAP), mean absolute error (MAE), R -square ( R 2 ), and T -test analyzed. Data has also shown that the nasal shape of Southeast Asians, especially Vietnamese, could be divided into different types in two perspective views. From cadavers for bony datasets, nasal bones can be classified into 2 morphological types in the lateral view which “V” shape was presented by 78.8% and the remains were “S” shape evaluated based on Lazovic (2015). With 2 angular dimension averages are 136.41 ± 7.99 and 104.25 ± 5.95 represented by the nasofrontal angle (g-n-prn) and the nasomental angle (n-prn-sn), respectively. For frontal view, classified by Hwang, Tae-Sun, et al. (2005), nasal morphology of Vietnamese participants could be divided into three types: type A was present in 57.6% and type B was present in 30.3% of the noses. In particular, types C, D, and E were not a common form of Vietnamese which includes the remaining number of participants. In conclusion, the proposed model performed the potential hybrid of CNN and BPNN with its application to give expected accuracy in terms of keypoint localization and nasal morphology regression. Nasal analysis can replace MRI imaging diagnostics that are reflected by the risk to human body.


Sign in / Sign up

Export Citation Format

Share Document