sewage treatment
Recently Published Documents





2022 ◽  
Vol 11 (1) ◽  
pp. 1-9
Lijuan Song

In order to meet the needs of ecological buildings, it is necessary to improve the speed of sewage treatment. Therefore, this study analyzed the impact of zinc oxide nanoparticles on the water supply and drainage of ecological buildings. In the experiment, zinc oxide nanoparticles were selected and the experimental environment was set up to study the treatment effect of nano particles on water supply and drainage wastewater. The experimental results show that: the application of ZnO nanoparticles in water supply and drainage can effectively remove trace elements in sewage and reduce the eutrophication of groundwater; zinc oxide nanoparticles can change the morphology of mold group in sewage and inhibit the growth of sewage. The application of ZnO nanoparticles in the water supply and drainage of ecological buildings can effectively improve the water purification rate and improve the recycling efficiency of water resources.

Mohieldeen M. A. Ahmed ◽  
Mohammed H. M. Gaily ◽  
Khalid M.O. Ortashi ◽  
Omer M.A. Al Ghabshawi ◽  
Nagwa F. Bashir ◽  

Hydrogen sulphide is a toxic gas, it can cause a range of physiological responses from simple annoyance to permanent injury and death. There are a number of approaches to deal with the impacts of toxic gases. This study focused on minimizing the hazard exposure for hydrogen sulfide in the different operational zones for activated sludge process in sewage waterplant. Research tools/ approaches conducted were interviews, toxic gas testers, analysis report interpretation &amp; quantitative risk assessment method. The study was conducted on Arabian Peninsula during the period (September 2019- September 2021). The (13) operational locations tested for toxic gas concentrations were inlet chamber, outlet channel, coarse /fine screens, primary sedimentation tank, activated sludge tanks, secondary sedimentation tanks, gas desulfurization unit, disc filters, chlorine dosing unit, sludge dewatering, sludge silos and digester tanks. The study found that the highest concentration for H<sub>2</sub>S in the inlet chamber/ outlet channel. The severity hazards in the sewage treatment plant using activated sludge process are the asphyxiation by H<sub>2</sub>S was extremely high can cause harm to public health, followed by the radiation hazard followed by electrical hazard, then (working at height, mechanical, traffic, health, chemical, physical, ergonomic, environmental, microbial and natural). The frequency of hazards occurrence is asphyxiation by H<sub>2</sub>S was extremely high followed by the radiation hazard and health hazard including the infection with Covid 19 virus followed by mechanical hazard then (electrical, traffic, ergonomic, natural, chemical, physical and natural). Control measures were recommended to minimize the risk of asphyxiation by H<sub>2</sub>S in the working environment at the STP.

2022 ◽  
Sidong Xian ◽  
Zhaoyu Yan ◽  
Wenhua Wan

Abstract With the continuous acceleration of urban construction and development, ecological governance has become an important part of our green life. Therefore, how to select the appropriate governance company in the complex decision-making environment is very important. A double hierarchy hesitant fuzzy linguistic multi-attributive border approximation area method (DHHFL-MABAC) is proposed in this paper, which is based on distance measure and comprehensive weight. DHHFL-MABAC method not only considers the potential loss, but also has simple calculation and stable results. The double hierarchy hesitant fuzzy linguistic distance measure based on least common multiple (DHHFLDM-LCME) is proposed, which reduces the loss of original information and makes the result more accurate. Binary contrast method is proposed and combined with entropy weight to obtain comprehensive weight, which makes the determined weight more reasonable. Finally, this method is applied to the case selected by the sewage treatment company and proved its effectiveness.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 142
Jiacong Sun ◽  
Yating Luo ◽  
Jien Ye ◽  
Chunhui Li ◽  
Jiyan Shi

Hexavalent chromium (Cr(VI)) waste produced by chrome plating activities pollutes the surrounding environment and harms human health. However, information about the chromium (Cr) pollution characteristics of actual electroplating sites is still lacking. In this study, the concentration, leachability and speciation of Cr in soils from a typical chrome plating site were analyzed. Our results showed that this site was severely contaminated by Cr (7.2 to 7735.2 mg/kg) and Cr(VI) reached the mean concentration of 138.7 mg/kg. The spatial distribution of Cr(VI) was related to the plating processes. Chrome plating and sewage treatment areas could be considered as the hot spots of contaminated sites. The vertical distribution of Cr(VI) was mainly affected by soil properties, where the loam layer retained and reduced a large amount of Cr(VI) due to its high content of iron minerals and finer particle fractions. Additionally, the chemical extraction results showed that Cr was mainly in non-residual fractions and the existence of Cr(VI) led to a high leaching toxicity based on the toxicity characteristic leaching procedure (TCLP) results. Moreover, X-ray photoelectron spectroscopy (XPS) results revealed the speciation of Cr in the long-term contaminated soils. A large amount of Cr(VI) was reduced into Cr(III) and mainly existed as Cr(OH)3 and Cr2O3. Furthermore, Cr(VI) tended to precipitate as CaCrO4 and persisted in soils. Therefore, it is necessary to find appropriate strategies to remediate these contaminated soils. Overall, these findings strengthen our understanding of Cr(VI) behaviors and lay a foundation for the future pollution investigation, ecological remediation and risk assessment of sites contaminated by electroplating.

2022 ◽  
Fahim Shahriar Sakib

Abstract Wastewater treatment is the process used to remove contaminants from wastewater to produce an effluent suitable for discharge to the environment. Several kinds of wastewater are treated based on the concentration of various parameters. Domestic Wastewater/Municipal Wastewater is treated in Sewage Treatment Plants (STP), which involve various types of processes like physical, chemical and biological to treat the wastewater better. The treatment plant involves five steps of the process – preliminary treatment, primary treatment, secondary treatment, tertiary treatment and sludge treatment to meet the safe disposal guidelines of the department of the environment. In this paper, a municipal wastewater treatment plant for Uttara City is designed and modeled with GPS-X. GPS-X is a wastewater treatment plant modeling software package that is used for verify the treatment process. The design calculation of all unit operations is shown with a specification table. The Process Flow Diagram (PFD), Process Block Diagram (PBD) and mass balance of the process are expressed in the article. The design calculation of the STP is performed with a steady-state process. After each unit operation, the concentration of various parameters – TSS, BOD, VSS, TN is analyzed and the removal efficiency for different equipment is calculated. The STP is designed to maintain the guidelines of the Department of Environment, Bangladesh. At the end of the paper, the designing and modeling steps of a sewage treatment plant will be pursued. Finally, some recommendations are done in the conclusion section.

Sign in / Sign up

Export Citation Format

Share Document