Lithofacies Classification Using the Multilayer Perceptron and the Self-organizing Neural Networks

Author(s):  
Sid-Ali Ouadfeul ◽  
Leila Aliouane
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Junyao Ling

This paper introduces the basic concepts and main characteristics of parallel self-organizing networks and analyzes and predicts parallel self-organizing networks through neural networks and their hybrid models. First, we train and describe the law and development trend of the parallel self-organizing network through historical data of the parallel self-organizing network and then use the discovered law to predict the performance of the new data and compare it with its true value. Second, this paper takes the prediction and application of chaotic parallel self-organizing networks as the main research line and neural networks as the main research method. Based on the summary and analysis of traditional neural networks, it jumps out of inertial thinking and first proposes phase space. Reconstruction parameters and neural network structure parameters are unified and optimized, and then, the idea of dividing the phase space into multiple subspaces is proposed. The multi-neural network method is adopted to track and predict the local trajectory of the chaotic attractor in the subspace with high precision to improve overall forecasting performance. During the experiment, short-term and longer-term prediction experiments were performed on the chaotic parallel self-organizing network. The results show that not only the accuracy of the simulation results is greatly improved but also the prediction performance of the real data observed in reality is also greatly improved. When predicting the parallel self-organizing network, the minimum error of the self-organizing difference model is 0.3691, and the minimum error of the self-organizing autoregressive neural network is 0.008, and neural network minimum error is 0.0081. In the parallel self-organizing network prediction of sports event scores, the errors of the above models are 0.0174, 0.0081, 0.0135, and 0.0381, respectively.


2014 ◽  
pp. 210-216
Author(s):  
Hirotaka Inoue ◽  
Kyoshiro Sugiyama

R ecently, mul tiple classifier systems have been used for practical applications to improve classification accuracy. Self-generating neural networks are one of the most suitable base-classifiers for multiple classifier systems because of their simple settings and fast learning ability. However, the computation cost of the multiple classifier system based on self-generating neural networks increases in proportion to the numbers of self-gene rating neural networks. In this paper, w e propose a novel prunin g method for efficient classification and we call this model a self-organizing neural grove. Experiments have been conducted to compare the self-organizing neural grove with bagging and the self-organizing neural grove with boosting, and support vector machine. The results show that the self-organizing neural grove can improve its classification accuracy as well as reducing the computation cost.


Sign in / Sign up

Export Citation Format

Share Document