scholarly journals Invariance Properties of the Constant-Complement View-Update Strategy

Author(s):  
Stephen J. Hegner
1990 ◽  
Vol 13 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Hans G. Feichtinger ◽  
A. Turan Gürkanli

Continuing a line of research initiated by Larsen, Liu and Wang [12], Martin and Yap [13], Gürkanli [15], and influenced by Reiter's presentation of Beurling and Segal algebras in Reiter [2,10] this paper presents the study of a family of Banach ideals of Beurling algebrasLw1(G),Ga locally compact Abelian group. These spaces are defined by weightedLp-conditions of their Fourier transforms. In the first section invariance properties and asymptotic estimates for the translation and modulation operators are given. Using these it is possible to characterize inclusions in section 3 and to show that two spaces of this type coincide if and only if their parameters are equal. In section 4 the existence of approximate identities in these algebras is established, from which, among other consequences, the bijection between the closed ideals of these algebras and those of the corresponding Beurling algebra is derived.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 662
Author(s):  
Mateu Sbert ◽  
Jordi Poch ◽  
Shuning Chen ◽  
Víctor Elvira

In this paper, we present order invariance theoretical results for weighted quasi-arithmetic means of a monotonic series of numbers. The quasi-arithmetic mean, or Kolmogorov–Nagumo mean, generalizes the classical mean and appears in many disciplines, from information theory to physics, from economics to traffic flow. Stochastic orders are defined on weights (or equivalently, discrete probability distributions). They were introduced to study risk in economics and decision theory, and recently have found utility in Monte Carlo techniques and in image processing. We show in this paper that, if two distributions of weights are ordered under first stochastic order, then for any monotonic series of numbers their weighted quasi-arithmetic means share the same order. This means for instance that arithmetic and harmonic mean for two different distributions of weights always have to be aligned if the weights are stochastically ordered, this is, either both means increase or both decrease. We explore the invariance properties when convex (concave) functions define both the quasi-arithmetic mean and the series of numbers, we show its relationship with increasing concave order and increasing convex order, and we observe the important role played by a new defined mirror property of stochastic orders. We also give some applications to entropy and cross-entropy and present an example of multiple importance sampling Monte Carlo technique that illustrates the usefulness and transversality of our approach. Invariance theorems are useful when a system is represented by a set of quasi-arithmetic means and we want to change the distribution of weights so that all means evolve in the same direction.


2021 ◽  
Vol 13 (11) ◽  
pp. 2145
Author(s):  
Yawen Liu ◽  
Bingxuan Guo ◽  
Xiongwu Xiao ◽  
Wei Qiu

3D mesh denoising plays an important role in 3D model pre-processing and repair. A fundamental challenge in the mesh denoising process is to accurately extract features from the noise and to preserve and restore the scene structure features of the model. In this paper, we propose a novel feature-preserving mesh denoising method, which was based on robust guidance normal estimation, accurate feature point extraction and an anisotropic vertex denoising strategy. The methodology of the proposed approach is as follows: (1) The dual weight function that takes into account the angle characteristics is used to estimate the guidance normals of the surface, which improved the reliability of the joint bilateral filtering algorithm and avoids losing the corner structures; (2) The filtered facet normal is used to classify the feature points based on the normal voting tensor (NVT) method, which raised the accuracy and integrity of feature classification for the noisy model; (3) The anisotropic vertex update strategy is used in triangular mesh denoising: updating the non-feature points with isotropic neighborhood normals, which effectively suppressed the sharp edges from being smoothed; updating the feature points based on local geometric constraints, which preserved and restored the features while avoided sharp pseudo features. The detailed quantitative and qualitative analyses conducted on synthetic and real data show that our method can remove the noise of various mesh models and retain or restore the edge and corner features of the model without generating pseudo features.


2011 ◽  
Vol 22 (1) ◽  
pp. 25-42 ◽  
Author(s):  
MICHAEL JOHNSON ◽  
ROBERT ROSEBRUGH ◽  
R. J. WOOD

This paper extends the ‘lens’ concept for view updating in Computer Science beyond the categories of sets and ordered sets. It is first shown that a constant complement view updating strategy also corresponds to a lens for a categorical database model. A variation on the lens concept called a c-lens is introduced, and shown to correspond to the categorical notion of Grothendieck opfibration. This variant guarantees a universal solution to the view update problem for functorial update processes.


Sign in / Sign up

Export Citation Format

Share Document