Lake Shoreline Evidence of Hydrologic Conditions in the Southern Basin and Range Province During the Late Pleistocene and Early Holocene: Paleoclimatic and Archaeological Implications

Author(s):  
Andrew L. Kowler
2019 ◽  
Vol 7 (2) ◽  
pp. T265-T282 ◽  
Author(s):  
Katelynn M. Smith ◽  
John H. McBride ◽  
Stephen T. Nelson ◽  
R. William Keach ◽  
Samuel M. Hudson ◽  
...  

Pilot Valley, located in the eastern Basin and Range, Western Utah, USA, contains numerous shorelines and depositional remnants of Late Pleistocene Lake Bonneville. These remnants present excellent ground-penetrating radar (GPR) targets due to their coherent stratification, low-clay, low-salinity, and low moisture content. Three-dimensional GPR imaging can resolve fine-scale stratigraphy of these deposits down to a few centimeters, and when combined with detailed outcrop characterization, it provides an in-depth look at the architecture of these deposits. On the western side of Pilot Valley, a well-preserved late Pleistocene gravel bar records shoreline depositional processes associated with the Provo (or just post-Provo) shoreline period. GPR data, measured stratigraphic sections, cores, paleontological sampling for paleoecology and radiocarbon dating, and mineralogical analysis permit a detailed reconstruction of the depositional environment of this well-exposed prograding gravel bar. Contrary to other described Bonneville shoreline deposits, calibrated radiocarbon ages ranging from 16.5 to 14.3 (ka, BP) indicate that the bar was stable and active during an overall regressive stage of the lake, as it dropped from the Provo shoreline (or just post-Provo level). Our study provides a model for an ancient pluvial lakeshore depositional environment in the Basin and Range province and suggests that stable, progradational bedforms common to the various stages of Lake Bonneville are likely not all associated with periods of shoreline stability, as is commonly assumed. The high-resolution GPR visualization demonstrates the high degree of compartmentalization possible for a potential subsurface reservoir target based on ancient shoreline sedimentary facies.


2019 ◽  
Vol 114 (6) ◽  
pp. 1095-1121
Author(s):  
John C. Mars ◽  
Gilpin R. Robinson ◽  
Jane M. Hammarstrom ◽  
Lukas Zürcher ◽  
Helen Whitney ◽  
...  

Abstract ArcGIS was used to spatially assess and rank potential porphyry copper deposits using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data together with geochemical and geologic datasets in order to estimate undiscovered deposits in the southern Basin and Range Province in the southwestern United States. The assessment was done using a traditional expert opinion three-part method and a prospectivity model developed using weights of evidence and logistic regression techniques to determine if ASTER data integrated with other geologic datasets can be used to find additional areas of prospectivity in well-explored permissive tracts. ASTER hydrothermal alteration data were expressed as 457 alteration polygons defined from a low-pass filtered alteration density map of combined argillic, phyllic, and propylitic rock units. Sediment stream samples were plotted as map grid data and used as spatial information in ASTER polygons. Gravity and magnetic data were also used to define basins greater than 1 km in depth. Each ASTER alteration polygon was ranked for porphyry copper potential using alteration types, spatial amounts of alteration, stream sediment geochemistry, lithology, polygon shape, proximity to other alteration polygons, and deposit and prospects data. Permissive tracts defined for the assessment in the southern Basin and Range Province include the Laramide Northwest, Laramide Southeast, Jurassic, and Tertiary tracts. Expert opinion estimates using the three-part assessment method resulted in a mean estimate of 17 undiscovered porphyry copper deposits, whereas the prospectivity modeling predicted a mean estimate of nine undiscovered deposits. In the well-explored Laramide Southeast tract, which contains the most deposits and has been explored for over 100 years, an average of 4.3 undiscovered deposits was estimated using ASTER alteration polygon data versus 2.8 undiscovered deposits without ASTER data. The Tertiary tract, which contains the largest number of ASTER alteration polygons not associated with known Tertiary deposits, was predicted to contain the most undiscovered resources in the southern Basin and Range Province.


Sign in / Sign up

Export Citation Format

Share Document