aster data
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 47)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 5073
Author(s):  
Fojun Yao ◽  
Xingwang Xu ◽  
Jianmin Yang ◽  
Xinxia Geng

Remote sensing (RS) of alteration zones and anomalies can provide information that is useful for geological prospecting and exploration. RS is an effective method for porphyry copper mineral exploration and prospecting prediction. More specifically, the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data, which include 14 spectral channels from visible light to thermal infrared, are useful in such cases. This study uses visible-shortwave infrared and thermal infrared ASTER data together with surface material spectra from the Duolong porphyry copper ore district to construct an RS-based alteration zonation model of the deposit. In this study, an RS alteration zoning model is established based on ground-spectral alteration zoning results. The methods include PCA (Principal Component Analysis), Ratio, and Slope methods. The information obtained by each method is different. RS-based alteration zonation is developed based on the intersection of maps, resultant from the different methods for extracting information related to different minerals. The alteration zonation information extracted from ASTER RS data is consistent with geological observations. Using information from the RS-based model, we mapped the alteration minerals and zones of the Duolong ore district, thereby identifying prospecting target areas of the deposit.


2021 ◽  
Vol 787 (1) ◽  
pp. 012119
Author(s):  
Yashuang Zhang ◽  
Haiman Wu ◽  
Deli Liu
Keyword(s):  

2021 ◽  
Vol 177 ◽  
pp. 104153
Author(s):  
Yousra Morsli ◽  
Youssef Zerhouni ◽  
Soufiane Maimouni ◽  
Saida Alikouss ◽  
Hamza Kadir ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
ULAŞ İNAN SEVİMLİ ◽  
MAMADOU TRAORE ◽  
YUSUF TOPAK ◽  
SENEM TEKİN

Abstract The Remote Sensing processing analysis have become a directing and hopeful instrument for mineral investigation and lithological mapping. Mineral exploration in general and bearing chromites associated with ultrabasic and basic rocks of the ophiolite complex in particular has been successfully carried out in recent years using Remote Sensing techniques. Yazıhan-Hekimhan (Malatya) region of East Taurus mountain belt, ranks second in terms of iron mineralization in Turkey are accepted. The area is characterized by high grade iron ore deposits in use, development and exploration. Lithological mapping and chromite ore exploration of this area is challenging owing to difficult access (High Mountain 2243 m) using the traditional method of exploration. The main objective of this research is to evaluate the capacity of Landsat-8 OLI and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery to discriminate and detect the potential zone of chromites bearing mineralized in Malatya (Yazıhan). Several images processing techniques, Vegetation Mask, Band Ratio (BR), Band Ratio Color Composite (BRCC), Principal Component Analysis (PCA), Decorrelation Stretch, Minimum Noise Fraction and Supervised classification using Spectral Angle Mapper (SAM) exist in previous studies have been performed for lithological mapping. The obtained results show that, BR, PCA and Decorrelation Stretch methods applied on NVIR-SWIR bands of Landsat-8 and ASTER were clearly discriminate the ophiolite rocks at a regional scale. In Addition, SAM classification was applied on a spectral signature of differents ultrabasic and basic rocks extracted from ASTER data. The results are promising in identifying the potentials zones of chromite ore mineralization zones within the ophiolite region. Thus, the techniques used in this research are suitable to detect or identify the high-potential chromite bearing areas in the ophiolite complex rocks using Landsat-8 OLI and ASTER data.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1538
Author(s):  
Giuseppe Mazzeo ◽  
Micheal S. Ramsey ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Nicola Pergola

The Normalized Hotspot Indices (NHI) tool is a Google Earth Engine (GEE)-App developed to investigate and map worldwide volcanic thermal anomalies in daylight conditions, using shortwave infrared (SWIR) and near infrared (NIR) data from the Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel 2 and Landsat 8 satellites. The NHI tool offers the possibility of ingesting data from other sensors. In this direction, we tested the NHI algorithm for the first time on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. In this study, we show the results of this preliminary implementation, achieved investigating the Kilauea (Hawaii, USA), Klyuchevskoy (Kamchatka; Russia), Shishaldin (Alaska; USA), and Telica (Nicaragua) thermal activities of March 2000–2008. We assessed the NHI detections through comparison with the ASTER Volcano Archive (AVA), the manual inspection of satellite imagery, and the information from volcanological reports. Results show that NHI integrated the AVA observations, with a percentage of unique thermal anomaly detections ranging between 8.8% (at Kilauea) and 100% (at Shishaldin). These results demonstrate the successful NHI exportability to ASTER data acquired before the failure of SWIR subsystem. The full ingestion of the ASTER data collection, available in GEE, within the NHI tool allows us to develop a suite of multi-platform satellite observations, including thermal anomaly products from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), which could support the investigation of active volcanoes from space, complementing information from other systems.


2021 ◽  
Vol 13 (2) ◽  
pp. 206
Author(s):  
Shuo Zheng ◽  
Yanfei An ◽  
Pilong Shi ◽  
Tian Zhao

The study of lithological features and tectonic evolution related to mineralization in the eastern Tian Shan is crucial for understanding the ore-controlling mechanism. In this paper, the lithological features and ore-controlling structure of the Huangshan Ni–Cu ore belt in the eastern Tian Shan are documented using advanced spaceborne thermal emission and reflection radiometer (ASTER) multispectral data based on spectral image processing algorithms, mineral indices and directional filter technology. Our results show that the algorithms of b2/b1, b6/b7 and b4/b8 from ASTER visible and near-infrared (VNIR)- shortwave infrared (SWIR) bands and of mafic index (MI), carbonate index (CI) and silica index (SI) from thermal infrared (TIR) bands are helpful to extract regional pyroxenite, external foliated gabbro bearing Ni–Cu ore bodies as well as the country rocks in the study area. The detailed interpretations and analyses of the geometrical feature of fault system and intrusive facies suggest that the Ni–Cu metallogenic belts are related to Carboniferous arc intrusive rocks and Permian wrench tectonics locating at the intersection of EW- and NEE-striking dextral strike-slip fault system, and the emplacement at the releasing bends in the southern margin of Kanggur Fault obviously controlled by secondary faults orthogonal or oblique to the Kanggur Fault in the post-collision extensional environment. Therefore, the ASTER data-based approach to map lithological features and ore-controlling structures related to the Ni–Cu mineralization are well performed. Moreover, a 3D geodynamic sketch map proposes that the strike-slip movement of Kanggur Fault in Huangshan-Kanggur Shear Zone (HKSZ) during early Permian controlled the migration and emplacement of three mafic/ultramafic intrusions bearing Ni–Cu derived from partial mantle melting and also favored CO2-rich fluids leaking to the participation of metallogenic processes.


Sign in / Sign up

Export Citation Format

Share Document