sedimentary facies
Recently Published Documents


TOTAL DOCUMENTS

1122
(FIVE YEARS 251)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Elizabeth L. Miller ◽  
Mark E. Raftrey ◽  
Jens-Erik Lund Snee

ABSTRACT In a reconnaissance investigation aimed at interrogating the changing topography and paleogeography of the western United States prior to Basin and Range faulting, a preliminary study made use of U-Pb ages of detrital zircon suites from 16 samples from the Eocene–Oligocene Titus Canyon Formation, its overlying units, and correlatives near Death Valley. The Titus Canyon Formation unconformably overlies Neoproterozoic to Devonian strata in the Funeral and Grapevine Mountains of California and Nevada. Samples were collected from (1) the type area in Titus Canyon, (2) the headwaters of Monarch Canyon, and (3) unnamed Cenozoic strata exposed in a klippe of the Boundary Canyon fault in the central Funeral Mountains. Red beds and conglomerates at the base of the Titus Canyon Formation at locations 1 and 2, which contain previously reported 38–37 Ma fossils, yielded mostly Sierran batholith–age detrital zircons (defined by Triassic, Jurassic, and Cretaceous peaks). Overlying channelized fluvial sandstones, conglomerates, and minor lacustrine shale, marl, and limestone record an abrupt change in source region around 38–36 Ma or slightly later, from more local, Sierran arc–derived sediment to extraregional sources to the north. Clasts of red radiolarian-bearing chert, dark radiolarian chert, and quartzite indicate sources in the region of the Golconda and Roberts Mountains allochthons of northern Nevada. Sandstones intercalated with conglomerate contain increasing proportions of Cenozoic zircon sourced from south-migrating, caldera-forming eruptions at the latitude of Austin and Ely in Nevada with maximum depositional ages (MDAs) ranging from 36 to 24 Ma at the top of the Titus Canyon Formation. Carbonate clasts and ash-rich horizons become more prevalent in the overlying conglomeratic Panuga Formation (which contains a previously dated 15.7 Ma ash-flow tuff). The base of the higher, ash-dominated Wahguyhe Formation yielded a MDA of 14.4 Ma. The central Funeral Mountains section exposes a different sequence of units that, based on new data, are correlative to the Titus Canyon, Panuga, and Wahguyhe Formations at locations 1 and 2. An ash-flow tuff above its (unexposed) base provided a MDA of 34 Ma, and the youngest sample yielded a MDA of 12.7 Ma. The striking differences between age-correlative sections, together with map-based evidence for channelization, indicate that the Titus Canyon Formation and overlying units likely represent fluvial channel, floodplain, and lacustrine deposits as sediments mostly bypassed the region, moving south toward the Paleogene shoreline in the Mojave Desert. The profound changes in source regions and sedimentary facies documented in the Titus Canyon Formation took place during ignimbrite flareup magmatism and a proposed eastward shift of the continental divide from the axis of the Cretaceous arc to a new divide in central Nevada in response to thermal uplift and addition of magma to the crust. This uplift initiated south-flowing fluvial systems that supplied sediments to the Titus Canyon Formation and higher units.


Geology ◽  
2022 ◽  
Author(s):  
Christopher B. DuRoss ◽  
Ryan D. Gold ◽  
Harrison J. Gray ◽  
Sylvia R. Nicovich

The quality and quantity of geochronologic data used to constrain the history of major earthquakes in a region exerts a first-order control on the accuracy of seismic hazard assessments that affect millions of people. However, evaluations of geochronological data are limited by uncertainties related to inherently complex depositional processes that may vary spatially and temporally. To improve confidence in models of earthquake timing, we use a high-density suite of radiocarbon and optically stimulated luminescence (OSL) ages with a grid of 342 portable OSL samples to explore spatiotemporal trends in geochronological data across an exemplary normal fault colluvial wedge exposure. The data reveal a two-dimensional age map of the paleoseismic exposure and demonstrate how vertical and horizontal trends in age relate to dominant sedimentary facies and soil characteristics at the site. Portable OSL data provide critical context for the interpretation of 14C and OSL ages, show that geochronologic age boundaries between pre- and post-earthquake deposits do not match stratigraphic contacts, and provide the basis for selecting alternate Bayesian models of earthquake timing. Our results demonstrate the potential to use emergent, portable OSL methods to dramatically improve paleoseismic constraints on earthquake timing.


Author(s):  
A. Minoubi ◽  
M. Bouchkara ◽  
K. El Khalidi ◽  
M. Chaibi ◽  
M. Ayt Ougougdal ◽  
...  

Abstract. This study focuses on morpho-sedimentary changes in the bay of Safi (Atlantic coast of Morocco), due to a progressive extension of the port. For this purpose, several bathymetric and sedimentary surveys carried out by the Hydrographic and Oceanographic Service of the Navy (SHOM) in 1892, 1906 and 1940 respectively, coupled with a bathymetric and sedimentary measurement mission in 2009, were analyzed to understand the impact of the port developments on the bottom of Safi Bay. This analysis consists of making maps of the evolution of (i) sedimentary facies (of different dates 1892, 1906, 1940 and 2009) and (ii) the shallow seabed of the three periods 1892–1906, 1906–1940 and 1940–2009. The sedimentary facies maps show that the facies appear unstable and evolve intermittently in response to environmental changes in the bay (port construction and expansion). In addition, the overlay of the bathymetric maps indicates that the bay has undergone changes (lowering, stability, and raising) controlled by hydrodynamic conditions before, during, and even after harbor construction. Analysis of the data showed that the expansion of the port often reshaped the morphology of the bay's seabed. The consequences of these evolutions are the appearance of the fattening or the erosion of the bank and the filling of small depressions of sediments. This evolution is reflected in the modification of the funds near the port and the beach of Safi.


2022 ◽  
Vol 9 ◽  
Author(s):  
Sofia Pechlivanidou ◽  
Anneleen H. Geurts ◽  
Guillaume Duclaux ◽  
Robert L. Gawthorpe ◽  
Christos Pennos ◽  
...  

Understanding the impact of tectonics on surface processes and the resultant stratigraphic evolution in multi-phase rifts is challenging, as patterns of erosion and deposition related to older phases of extension are overprinted by the subsequent extensional phases. In this study, we use a one-way coupled numerical modelling approach between a tectonic and a surface processes model to investigate topographic evolution, erosion and basin stratigraphy during single and multi-phase rifting. We compare the results from the single and the multi-phase rift experiments for a 5 Myr period during which they experience equal amounts of extension, but with the multi-phase experiment experiencing fault topography inherited from a previous phase of extension. Our results demonstrate a very dynamic evolution of the drainage network that occurs in response to fault growth and linkage and to depocentre overfilling and overspilling. We observe profound differences between topographic and depocenter development during single and multi-phase rifting with implications for sedimentary facies architecture. Our quantitative approach, enables us to better understand the impact of changing extension direction on the distribution of sediment source areas and the syn-rift stratigraphic development through time and space.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Shiqi Liu ◽  
Yuyang Liu

As the northwestern area of the Junggar Basin is a key area for oil and gas exploration, the sedimentary facies of the Jurassic formations in the Wuerhe area has long been a focus of research. The target strata are Jurassic strata, including five formations: the Lower Jurassic Badaowan and Sangonghe, the Middle Jurassic Xishanyao and Toutunhe and the Upper Jurassic Qigu. Disputes over the are sedimentary facies division exist in this area. Considering the W105 well region in this area as an example, the overall sedimentary facies of single-well logging facies is analyzed and then expanded to two cross-sections and characterized. Based on previous studies, a detailed overview of the regional stratigraphy is obtained by well logs and other data. Then, two cross-sections are selected and analyzed. The single-well and continuous-well facies of 10 wells in the sections are analyzed to grasp the sand bodies’ spatial distribution. Finally, a planar contour map of the net to gross ratio is mapped to analyze the sources and the distribution of the sand bodies in each period. The sedimentary facies map is also mapped to predict the sedimentary evolution. The results show that the sedimentary facies of the Badaowan Formation in the study area was an underwater distributary channel of the fan-delta front, and the sand body spread continuously from northwest to southeast. The Sangonghe Formation entered a lake transgression period with a rising water level, at which time shore–shallow lacustrine deposits were widespread throughout the region. The period of the Xishanyao Formation entered a regression period, the northwest region was tectonically uplifted, and the central and southeastern regions facies were dominated by the fan-delta front and shallow lacustrine. During the Toutunhe Formation period, the northwest region continued to uplift and was dominated by delta plain facies. During the period of the Qigu Formation, the thickness of stratigraphic erosion reached its maximum, and the non-erosion area of the study area was mainly deposited by the fan-delta plain. Overall, the Jurassic system in the W105 well area is a fan delta–lacustrine–fan delta sedimentary system.


2021 ◽  
Vol 54 (2F) ◽  
pp. 13-21
Author(s):  
Hamid Alsultan ◽  
Karrar Awad

A surface section of the Fatha Formation (Middle Miocene) was studied in the Shaqlawa area, Erbil, Northern Iraq. It consists of siliciclastic silt, evaporates, and carbonates in a mixed siliciclastic silt composition. The Fatha Formation in the study area can be divided into two members of variable thickness based on rocky differences. Depositional settings ranged from shallow open-marine and restricted-hypersaline to supratidal and continental (sabkha, fluvio-deltaic, and exposure). It is bounded below by a type one sequence boundary above the Eocene Pila Spi Formation and marked by conglomerates. The upper sequence boundary with the Injana Formation is conformable. Thirteen sedimentary facies were distinguished in the Fatha Formation within the Shaqlawa region of northern Iraq and include sandstone to mudstone, wavy bedded sandstone to mudstone, Flaser bedded sandstone to mudstone, Marl, sandstone, cross lamination sandstone, Trough cross bedded sandstone, Planar cross bedded sandstone, marly limestone lithofacies, bioclastic grainstone to packstone microfacies, bioclastic lime mudstone to wackestone microfacies, lime mudstone-wackestone microfacies, and gypsum lithofacies. The depositional environment of the formation was inferred based on the facies association concepts. The succession formation can be divided into several third-order cycles, which reflect fluctuations in the relative sea-level rise. High-frequency cycles of transgressive System Tract and Highstand System tract. Fundamental to the evolution of the sequence, in this case, is the local tectonic component.


Author(s):  
Md. Masidul Haque ◽  
Manoj Kumer Ghosh ◽  
Koichi Hoyanagi

Sea-level rise and sediment supply have influenced coastal morphology and sedimentation on Bangladesh’s southwestern Ganges‐Brahmaputra‐Meghna (GBM) delta coast. Satellite images and geological core from the Haringhata coastal region were analyzed to explain the morphological changes and to understand the influences on deposits. The results derived from satellite images indicate that the southern coastline experienced a retreat that ranges between 2.3 and 2.9 km. In contrast, the eastern and western coastline advanced. The erosion and accretion ratio was 0.29 from 1977 to 1989, while the ratio was higher 2.90–4.77 from 1989 to 2020. Two sedimentary facies were identified using 130 cm thick successions. A parallel to wavy laminated bluish gray mud facies of deeper part was deposited in a marine-influenced environment. A planar to hummocky cross stratified, gray to grayish white silty sand facies of storm overwash deposits overlies the mud facies with sharp contacts. Unimodal to bimodal grain distributions of sandy sediments suggest two sources: sand derived from the beach and mud carried by adjacent tidal rivers and resuspended offshore sediment. Coastline dynamics and sedimentation of the area were influenced by inequality of accommodation and sediment supply ratio in the river mouth. This occurs due to sea-level rise and deficit in upstream water and sediment discharge. Morphological change along the southwestern GBM delta coast was not only caused by wave energy, but also by rising sea levels which shifted sediment accommodation space landward.


2021 ◽  
Author(s):  
Dengyi Xiao ◽  
Mingsheng Lv ◽  
Guangcheng Hu ◽  
Wenyuan Tian ◽  
Li Wang ◽  
...  

Abstract In Western UAE, the Middle Cretaceous petroleum system is composed of Shilaif source, Mishrif/Tuwayil reservoir and Tuwayil/Ruwaydha seal. Oil is discovered in Tuwayil sandstone in DH and NN fields. Well correlation of Tuwayil siliciclastic interval shows high heterogeneity and rapid lithology varies. Currently, a few general studies about Tuwayil sandstone was published. However, detailed sedimentary facies, reservoir characteristics and accumulation mechanism about Tuwayil are ambiguous. Limitation on these aspects prohibits enlarging exploration activity of Tuwayil and makes barriers to deepen understanding of the whole K2 PS. To enhance understanding on Tuwayil formation, well data in DH, NN fields and adjacent area was integrated. Dedicated single well analysis, well correlation and petrophysics study were carried out. Cores were observed and laboratory outcomes including TS, SEM, RCA, MICP, XRD were adopted into this study. Furthermore, we have also utilized 2D&3D seismic to illustrate the spatial distribution of Tuwayil siliciclastic setting and interior sediment pattern. Basically, the Tuwayil sand-shale interval represents the infilling of Mishrif/Shilaif intrashelf basin and mainly deposits in the tidal flat-delta facies. The epi-continental clast is sourced from the Arabian shield and transferred from west to east. In Western UAE, the Tuwayil depocenter located in DH field, where 4-5 sand layers deposit with net pay of 30-40ft. In NN field, only one sand layer develops with net pay about 4-6ft. Through deposition cycles identification and seismic reflection observation, two sand groups could be recognized in this interval. The lower group is constrained in the depocenter and influenced by the paleo-geomorphology background. The upper group overpassed the former set and pinched out around north of NN. The Mishrif/Shilaif slope area is another potential belt to enlarge Tuwayil discovery, where stratigraphic onlap could be observed and it probably represents the sand pinch-out in lower sand group. For the K2 PS, previous study believed the shale between Tuwayil sand and Mishrif separate these two reservoirs and works as cap rock for Mishrif grainstone. This study suggests that this shale is too thin and not continuous enough to hold the hydrocarbon in Mishrif. On that note, Tuwayil sand and Mishrif belong to the same petroleum system in NN and may have the same OWC. In the NN field, it is quite crucial to consider the extension of Tuwayil sand during evaluating the stratigraphic prospect of Mishrif because the hydrocarbon is mostly likely charged Tuwayil sand first and then gets into underlain Mishrif. This study provides updates and understandings on sedimentary facies, depositional pattern, hydrocarbon accumulation mechanism, reservoir extension and potential identification of Tuwayil formation, which has inspiring implications for the whole K2 PS and could also de-risk the further exploration activity in Western UAE.


2021 ◽  
Vol 17 (6) ◽  
pp. 2515-2536
Author(s):  
Rebekah A. Stein ◽  
Nathan D. Sheldon ◽  
Sarah E. Allen ◽  
Michael E. Smith ◽  
Rebecca M. Dzombak ◽  
...  

Abstract. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar / 39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.


2021 ◽  
Vol 9 (12) ◽  
pp. 1372
Author(s):  
Syed Kamran Ali ◽  
Hammad Tariq Janjuhah ◽  
Syed Muzyan Shahzad ◽  
George Kontakiotis ◽  
Muhammad Hussain Saleem ◽  
...  

The Upper Indus Basin, in Pakistan’s western Salt Range, is home to the Zaluch Gorge. The sedimentary rocks found in this Gorge, belonging to the Chhidru Formation, were studied in terms of sedimentology and stratigraphy, and provide new insights into the basin paleogeographic evolution from the Precambrian to the Jurassic period. Facies analysis in the Chhidru Formation deposits allowed the recognition of three lithofacies (the limestone facies—CF1, the limestone with clay interbeds facies—CF2, and the sandy limestone facies—CF3) with five microfacies types (mudstone biomicrite—MF-1, wackestone-biomicrite—MF-2, wackestone-biosparite—MF-3, pack-stone-biomicrite—MF-4, and packstone-biosparite—MF-5), as well as their depositional characteristics. The identified carbonate and siliciclastic formations display various facies in a shallow marine environment, with different lithologies, sedimentary features, and energy conditions. It is thought that the depositional characteristics of these microfacies are closer to those of the middle to outer shelf. Because of the progressively coarsening outcrop sequence, this formation seems to be at the very top of the high stand system tract (HST). A modified dynamic depositional model of the Chhidru Formation is further built using outcrop data, facies information, and stratigraphy. According to this concept, the formation was deposited in the middle to inner shelf area of the shallow marine environment, during the Late-Permian period. The Permo-Triassic Boundary (PTB), which is the end of the type-1 series, is marked by this formation’s top.


Sign in / Sign up

Export Citation Format

Share Document