scholarly journals Access Annotation for Safe Program Parallelization

Author(s):  
Chen Ding ◽  
Lei Liu
2020 ◽  
Vol 23 (3) ◽  
pp. 473-493
Author(s):  
Nikita Andreevich Kataev ◽  
Alexander Andreevich Smirnov ◽  
Andrey Dmitrievich Zhukov

The use of pointers and indirect memory accesses in the program, as well as the complex control flow are some of the main weaknesses of the static analysis of programs. The program properties investigated by this analysis are too conservative to accurately describe program behavior and hence they prevent parallel execution of the program. The application of dynamic analysis allows us to expand the capabilities of semi-automatic parallelization. In the SAPFOR system (System FOR Automated Parallelization), a dynamic analysis tool has been implemented, based on on the instrumentation of the LLVM representation of an analyzed program, which allows the system to explore programs in both C and Fortran programming languages. The capabilities of the static analysis implemented in SAPFOR are used to reduce the overhead program execution, while maintaining the completeness of the analysis. The use of static analysis allows to reduce the number of analyzed memory accesses and to ignore scalar variables, which can be explored in a static way. The developed tool was tested on performance tests from the NAS Parallel Benchmarks package for C and Fortran languages. The implementation of dynamic analysis, in addition to traditional types of data dependencies (flow, anit, output), allows us to determine privitizable variables and a possibility of pipeline execution of loops. Together with the capabilities of DVM and OpenMP these greatly facilitates program parallelization and simplify insertion of the appropriate compiler directives.


2021 ◽  
Vol 24 (1) ◽  
pp. 157-183
Author(s):  
Никита Андреевич Катаев

Automation of parallel programming is important at any stage of parallel program development. These stages include profiling of the original program, program transformation, which allows us to achieve higher performance after program parallelization, and, finally, construction and optimization of the parallel program. It is also important to choose a suitable parallel programming model to express parallelism available in a program. On the one hand, the parallel programming model should be capable to map the parallel program to a variety of existing hardware resources. On the other hand, it should simplify the development of the assistant tools and it should allow the user to explore the parallel program the assistant tools generate in a semi-automatic way. The SAPFOR (System FOR Automated Parallelization) system combines various approaches to automation of parallel programming. Moreover, it allows the user to guide the parallelization if necessary. SAPFOR produces parallel programs according to the high-level DVMH parallel programming model which simplify the development of efficient parallel programs for heterogeneous computing clusters. This paper focuses on the approach to semi-automatic parallel programming, which SAPFOR implements. We discuss the architecture of the system and present the interactive subsystem which is useful to guide the SAPFOR through program parallelization. We used the interactive subsystem to parallelize programs from the NAS Parallel Benchmarks in a semi-automatic way. Finally, we compare the performance of manually written parallel programs with programs the SAPFOR system builds.


2009 ◽  
Vol 410 (46) ◽  
pp. 4704-4723 ◽  
Author(s):  
Daniel Cabeza Gras ◽  
Manuel V. Hermenegildo

2010 ◽  
Vol 19 (07) ◽  
pp. 1465-1481
Author(s):  
SUN YU ◽  
WEI ZHANG

This paper surveys the state-of-the-art parallel techniques for multiprocessor architectures, and studies its implication for Java programs, which are typically compiled at run-time. First, this paper overviews basic techniques of program parallelization in traditional static compilers, followed by a survey of successful parallelizing compilers. Then this paper introduces the latest research topics in this area, particularly focusing on the efforts of combining parallelizing techniques with Java virtual machines, including parallel compilation and parallel real-time garbage collection. Finally, this paper summaries the opportunities and challenges of parallelizing Java computing on multicore platforms.


Sign in / Sign up

Export Citation Format

Share Document