scholarly journals A Square Block Format for Symmetric Band Matrices

Author(s):  
Fred G. Gustavson ◽  
José R. Herrero ◽  
Enric Morancho
Keyword(s):  
2018 ◽  
Vol 07 (02) ◽  
pp. 1850002
Author(s):  
Sheehan Olver ◽  
Andrew Swan

We prove that the Poisson/Gaudin–Mehta phase transition conjectured to occur when the bandwidth of an [Formula: see text] symmetric band matrix grows like [Formula: see text] is naturally observable in the rate of convergence of the level density to the Wigner semi-circle law. Specifically, we show for periodic and non-periodic band matrices the rate of convergence of the fourth moment of the level density is independent of the boundary conditions in the localized regime [Formula: see text] with a rate of [Formula: see text] for both cases, whereas in the delocalized regime [Formula: see text] where boundary effects become important, the rate of convergence for the two ensembles differs significantly, slowing to [Formula: see text] for non-periodic band matrices. Additionally, we examine the case of thick non-periodic band matrices [Formula: see text], showing that the fourth moment is maximally deviated from the Wigner semi-circle law when [Formula: see text], and provide numerical evidence that the eigenvector statistics also exhibit critical behavior at this point.


1972 ◽  
Vol 12 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Lars Rehnqvist
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
pp. 321-330
Author(s):  
Omojola Micheal ◽  
Emrah Kilic

Abstract Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants and norm-infinity of inverse are presented. The binomial coefficients are used for the derivation of results.


2020 ◽  
Vol 32 (07) ◽  
pp. 2050022
Author(s):  
Werner Kirsch ◽  
Thomas Kriecherbauer

We consider ensembles of real symmetric band matrices with entries drawn from an infinite sequence of exchangeable random variables, as far as the symmetry of the matrices permits. In general, the entries of the upper triangular parts of these matrices are correlated and no smallness or sparseness of these correlations is assumed. It is shown that the eigenvalue distribution measures still converge to a semicircle but with random scaling. We also investigate the asymptotic behavior of the corresponding [Formula: see text]-operator norms. The key to our analysis is a generalization of a classic result by de Finetti that allows to represent the underlying probability spaces as averages of Wigner band ensembles with entries that are not necessarily centered. Some of our results appear to be new even for such Wigner band matrices.


2014 ◽  
Vol 90 ◽  
pp. 55-66 ◽  
Author(s):  
Michael Moldaschl ◽  
Wilfried N. Gansterer
Keyword(s):  

Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Hongwei Liu ◽  
Yi Luo

The finite-difference solution of the second-order acoustic wave equation is a fundamental algorithm in seismic exploration for seismic forward modeling, imaging, and inversion. Unlike the standard explicit finite difference (EFD) methods that usually suffer from the so-called "saturation effect", the implicit FD methods can obtain much higher accuracy with relatively short operator length. Unfortunately, these implicit methods are not widely used because band matrices need to be solved implicitly, which is not suitable for most high-performance computer architectures. We introduce an explicit method to overcome this limitation by applying explicit causal and anti-causal integrations. We can prove that the explicit solution is equivalent to the traditional implicit LU decomposition method in analytical and numerical ways. In addition, we also compare the accuracy of the new methods with the traditional EFD methods up to 32nd order, and numerical results indicate that the new method is more accurate. In terms of the computational cost, the newly proposed method is standard 8th order EFD plus two causal and anti-causal integrations, which can be applied recursively, and no extra memory is needed. In summary, compared to the standard EFD methods, the new method has a spectral-like accuracy; compared to the traditional LU-decomposition implicit methods, the new method is explicit. It is more suitable for high-performance computing without losing any accuracy.


Sign in / Sign up

Export Citation Format

Share Document