Special Matrices
Latest Publications


TOTAL DOCUMENTS

228
(FIVE YEARS 86)

H-INDEX

5
(FIVE YEARS 2)

Published By De Gruyter Open Sp. Z O.O.

2300-7451

2022 ◽  
Vol 10 (1) ◽  
pp. 193-202
Author(s):  
Iswar Mahato ◽  
M. Rajesh Kannan

Abstract The eccentricity matrix ɛ(G) of a graph G is obtained from the distance matrix of G by retaining the largest distances in each row and each column, and leaving zeros in the remaining ones. The eccentricity energy of G is sum of the absolute values of the eigenvalues of ɛ(G). Although the eccentricity matrices of graphs are closely related to the distance matrices of graphs, a number of properties of eccentricity matrices are substantially different from those of the distance matrices. The change in eccentricity energy of a graph due to an edge deletion is one such property. In this article, we give examples of graphs for which the eccentricity energy increase (resp., decrease) but the distance energy decrease (resp., increase) due to an edge deletion. Also, we prove that the eccentricity energy of the complete k-partite graph Kn 1, ... , nk with k ≥ 2 and ni ≥ 2, increases due to an edge deletion.


2021 ◽  
Vol 10 (1) ◽  
pp. 180-192
Author(s):  
Ricardo L. Soto

Abstract Let Λ = {λ1, λ2, . . ., λ n } be a list of complex numbers. Λ is said to be realizable if it is the spectrum of an entrywise nonnegative matrix. Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. Minc ([21],1981) showed that if Λ is diagonalizably positively realizable, then Λ is universally realizable. The positivity condition is essential for the proof of Minc, and the question whether the result holds for nonnegative realizations has been open for almost forty years. Recently, two extensions of the Minc’s result have been proved in ([5], 2018) and ([12], 2020). In this work we characterize new left half-plane lists (λ1 > 0, Re λ i ≤ 0, i = 2, . . ., n) no positively realizable, which are universally realizable. We also show new criteria which allow to decide about the universal realizability of more general lists, extending in this way some previous results.


2021 ◽  
Vol 10 (1) ◽  
pp. 166-179
Author(s):  
Peter J. Dukes ◽  
Xavier Martínez-Rivera

Abstract The enhanced principal rank characteristic sequence (epr-sequence) of a symmetric matrix B ∈ 𝔽 n×n is defined as ℓ1ℓ2· · · ℓ n , where ℓ j ∈ {A, S, N} according to whether all, some but not all, or none of the principal minors of order j of B are nonzero. Building upon the second author’s recent classification of the epr-sequences of symmetric matrices over the field 𝔽 = 𝔽2, we initiate a study of the case 𝔽= 𝔽3. Moreover, epr-sequences over finite fields are shown to have connections to Ramsey theory and coding theory.


2021 ◽  
Vol 10 (1) ◽  
pp. 153-165
Author(s):  
Tian-Xiao He ◽  
José L. Ramírez

Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.


2021 ◽  
Vol 10 (1) ◽  
pp. 117-130
Author(s):  
Muyan Jiang ◽  
Ilya M. Spitkovsky

Abstract By definition, reciprocal matrices are tridiagonal n-by-n matrices A with constant main diagonal and such that ai , i +1 ai +1, i = 1 for i = 1, . . ., n − 1. We establish some properties of the numerical range generating curves C(A) (also called Kippenhahn curves) of such matrices, in particular concerning the location of their elliptical components. For n ≤ 6, in particular, we describe completely the cases when C(A) consist entirely of ellipses. As a corollary, we also provide a complete description of higher rank numerical ranges when these criteria are met.


2021 ◽  
Vol 10 (1) ◽  
pp. 131-152
Author(s):  
Stephen Drury

Abstract We discuss the question of classifying the connected simple graphs H for which the second largest eigenvalue of the signless Laplacian Q(H) is ≤ 4. We discover that the question is inextricable linked to a knapsack problem with infinitely many allowed weights. We take the first few steps towards the general solution. We prove that this class of graphs is minor closed.


2021 ◽  
Vol 10 (1) ◽  
pp. 67-86
Author(s):  
Bakytzhan Kurmanbek ◽  
Yogi Erlangga ◽  
Yerlan Amanbek

Abstract This paper presents the explicit inverse of a class of seven-diagonal (near) Toeplitz matrices, which arises in the numerical solutions of nonlinear fourth-order differential equation with a finite difference method. A non-recurrence explicit inverse formula is derived using the Sherman-Morrison formula. Related to the fixed-point iteration used to solve the differential equation, we show the positivity of the inverse matrix and construct an upper bound for the norms of the inverse matrix, which can be used to predict the convergence of the method.


2021 ◽  
Vol 10 (1) ◽  
pp. 56-66
Author(s):  
Chaohui Chen ◽  
Jiarong Peng ◽  
Tianyuan Chen

Abstract Recently, the extremal problem of the spectral radius in the class of complements of trees, unicyclic graphs, bicyclic graphs and tricyclic graphs had been studied widely. In this paper, we extend the largest ordering of A α -spectral radius among all complements of bicyclic and tricyclic graphs with n vertices, respectively.


2021 ◽  
Vol 10 (1) ◽  
pp. 47-55
Author(s):  
Grigore Călugăreanu
Keyword(s):  

Abstract Over commutative domains we characterize the singular 2 × 2 matrices which are products of two idempotents or products of two nilpotents. The relevant casees are the matrices with zero second row and the singular matrices with only nonzero entries.


2021 ◽  
Vol 10 (1) ◽  
pp. 40-46
Author(s):  
Zhaolin Jiang ◽  
Yanpeng Zheng ◽  
Tianzi Li

Abstract In this paper, we consider a new Sylvester-Kac matrix, i.e., Fibonacci-Sylvester-Kac matrix. We discuss the eigenvalues, eigenvectors and characteristic polynomial of this matrix in two categories based on whether the Fibonacci-Sylvester-Kac matrix order is odd or even. Besides, we also give the explicit formulas for its determinant and inverse.


Sign in / Sign up

Export Citation Format

Share Document