Neuronal Coding of Visual Space in the Posterior Parietal Cortex

Author(s):  
P. P. Battaglini ◽  
C. Galletti ◽  
P. Fattori
Physiology ◽  
1997 ◽  
Vol 12 (4) ◽  
pp. 166-171 ◽  
Author(s):  
C Galletti ◽  
PP Battaglini ◽  
P Fattori

The recently reported existence of neurons able to encode visual space in the superior parietal lobule of the monkey brain suggests that human and monkey superior parietal lobules are homologous structures.


2000 ◽  
Vol 17 (5) ◽  
pp. 701-709 ◽  
Author(s):  
STEPHEN G. LOMBER ◽  
BERTRAM R. PAYNE

The purpose of the present study was to examine the contributions made by cat posterior parietal cortex to the analyses of the relative position of objects in visual space. Two cats were trained on a landmark task in which they learned to report the position of a landmark object relative to a right or left food-reward chamber. Subsequently, three pairs of cooling loops were implanted bilaterally in contact with visuoparietal cortices forming the crown of the middle suprasylvian gyrus (MSg; architectonic area 7) and the banks of the posterior-middle suprasylvian sulcus (pMS sulcal cortex) and in contact with the ventral-posterior suprasylvian (vPS) region of visuotemporal cortex. Bilateral deactivation of pMS sulcal cortex resulted in a profound impairment for all six tested positions of the landmark, yet bilateral deactivation of neither area 7 nor vPS cortex yielded any deficits. In control tasks (visual orienting and object discrimination), there was no evidence for any degree of attentional blindness or impairment of form discrimination during bilateral deactivation of pMS cortex. Therefore, we conclude that bilateral cooling of pMS cortex, but neither area 7 nor vPS cortex, induces a specific deficit in spatial localization as examined with the landmark task. These observations have significant bearing on our understanding of visuospatial processing in cat, monkey, and human cortices.


2005 ◽  
Vol 163 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Christian Bellebaum ◽  
Klaus-Peter Hoffmann ◽  
Irene Daum

2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

2018 ◽  
Author(s):  
Imogen M Kruse

The near-miss effect in gambling behaviour occurs when an outcome which is close to a win outcome invigorates gambling behaviour notwithstanding lack of associated reward. In this paper I postulate that the processing of concepts which are deemed controllable is rooted in neurological machinery located in the posterior parietal cortex specialised for the processing of objects which are immediately actionable or controllable because they are within reach. I theorise that the use of a common machinery facilitates spatial influence on the perception of concepts such that the win outcome which is 'almost complete' is perceived as being 'almost within reach'. The perceived realisability of the win increases subjective reward probability and the associated expected action value which impacts decision-making and behaviour. This novel hypothesis is the first to offer a neurological model which can comprehensively explain many empirical findings associated with the near-miss effect as well as other gambling phenomena such as the ‘illusion of control’. Furthermore, when extended to other compulsive behaviours such as drug addiction, the model can offer an explanation for continued drug-seeking following devaluation and for the increase in cravings in response to perceived opportunity to self-administer, neither of which can be explained by simple reinforcement models alone. This paper therefore provides an innovative and unifying perspective for the study and treatment of behavioural and substance addictions.


Sign in / Sign up

Export Citation Format

Share Document