posterior parietal
Recently Published Documents


TOTAL DOCUMENTS

1370
(FIVE YEARS 268)

H-INDEX

112
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Kaushik J Lakshminarasimhan ◽  
Eric Avila ◽  
Xaq Pitkow ◽  
Dora E Angelaki

Success in many real-world tasks depends on our ability to dynamically track hidden states of the world. To understand the underlying neural computations, we recorded brain activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow to a hidden target location within a virtual environment, without explicit position cues. In addition to sequential neural dynamics and strong interneuronal interactions, we found that the hidden state -- monkey's displacement from the goal -- was encoded in single neurons, and could be dynamically decoded from population activity. The decoded estimates predicted navigation performance on individual trials. Task manipulations that perturbed the world model induced substantial changes in neural interactions, and modified the neural representation of the hidden state, while representations of sensory and motor variables remained stable. The findings were recapitulated by a task-optimized recurrent neural network model, suggesting that neural interactions in PPC embody the world model to consolidate information and track task-relevant hidden states.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Akinobu Suzuki ◽  
Sakurako Kosugi ◽  
Emi Murayama ◽  
Eri Sasakawa ◽  
Noriaki Ohkawa ◽  
...  

AbstractWhen processing current sensory inputs, animals refer to related past experiences. Current information is then incorporated into the related neural network to update previously stored memories. However, the neuronal mechanism underlying the impact of memories of prior experiences on current learning is not well understood. Here, we found that a cellular ensemble in the posterior parietal cortex (PPC) that is activated during past experience mediates an interaction between past and current information to update memory through a PPC-anterior cingulate cortex circuit in mice. Moreover, optogenetic silencing of the PPC ensemble immediately after retrieval dissociated the interaction without affecting individual memories stored in the hippocampus and amygdala. Thus, a specific subpopulation of PPC cells represents past information and instructs downstream brain regions to update previous memories.


2022 ◽  
Author(s):  
Mollie Hamilton ◽  
Ashley Ross ◽  
Erik Blaser ◽  
Zsuzsa Kaldy

Working Memory (WM), the ability to maintain information in service to a task, is characterized by its limited capacity. Several influential models attribute this limitation in a large extent to proactive interference (Anderson & Neely, 1996; Bunting, 2006; Kane & Engle, 2000), the phenomenon that previously encoded, now-irrelevant information competes with relevant information (Keppel & Underwood, 1963). Here, we look back at the adult PI literature, spanning over sixty years, as well as recent results linking the ability to cope with PI to WM capacity (Endress & Potter, 2014; Kane & Engle, 2000). In early development, WM capacity is even more limited (Kaldy & Leslie, 2005; Simmering, 2012), yet an accounting for the role of PI has been lacking. Our Focus Article aims to address this through an integrative account: since PI resolution is mediated by networks involving the frontal cortex (particularly, the left inferior frontal gyrus) and the posterior parietal cortex (Badre & Wagner, 2005; Jonides & Nee, 2006), and since children have protracted development and less recruitment (Crone et al., 2006) of these areas, the increase in the ability to cope with PI (Kail, 2002; De Visscher & Noel, 2014) is a major factor underlying the increase in WM capacity in early development. Given this, we suggest that future research should focus on mechanistic studies of PI resolution in children. Finally, we note a crucial methodological implication: typical WM paradigms repeat stimuli from trial-to-trial, facilitating, inadvertently, PI and reducing performance; we may be fundamentally underestimating children’s WM capacity.


2022 ◽  
Vol 73 (1) ◽  
pp. 131-158
Author(s):  
Richard A. Andersen ◽  
Tyson Aflalo ◽  
Luke Bashford ◽  
David Bjånes ◽  
Spencer Kellis

Traditional brain–machine interfaces decode cortical motor commands to control external devices. These commands are the product of higher-level cognitive processes, occurring across a network of brain areas, that integrate sensory information, plan upcoming motor actions, and monitor ongoing movements. We review cognitive signals recently discovered in the human posterior parietal cortex during neuroprosthetic clinical trials. These signals are consistent with small regions of cortex having a diverse role in cognitive aspects of movement control and body monitoring, including sensorimotor integration, planning, trajectory representation, somatosensation, action semantics, learning, and decision making. These variables are encoded within the same population of cells using structured representations that bind related sensory and motor variables, an architecture termed partially mixed selectivity. Diverse cognitive signals provide complementary information to traditional motor commands to enable more natural and intuitive control of external devices.


2021 ◽  
Vol 11 (12) ◽  
pp. 1610
Author(s):  
Adam Culbreth ◽  
Zuzana Kasanova ◽  
Thomas Ross ◽  
Betty Salmeron ◽  
James Gold ◽  
...  

Recent evidence suggests that the aberrant signaling of salience is associated with psychotic illness. Salience, however, can take many forms in task environments. For example, salience may refer to any of the following: (1) the valence of an outcome, (2) outcomes that are unexpected, called reward prediction errors (PEs), or (3) cues associated with uncertain outcomes. Here, we measure brain responses to different forms of salience in the context of a passive PE-signaling task, testing whether patients with schizophrenia (SZ) showed aberrant signaling of particular types of salience. We acquired event-related MRI data from 29 SZ patients and 23 controls during the performance of a passive outcome prediction task. Across groups, we found that the anterior insula and posterior parietal cortices were activated to multiple different types of salience, including PE magnitude and heightened levels of uncertainty. However, BOLD activation to salient events was not significantly different between patients and controls in many regions, including the insula, posterior parietal cortices, and default mode network nodes. Such results suggest that deficiencies in salience processing in SZ may not result from an impaired ability to signal salience per se, but instead the ability to use such signals to guide future actions. Notably, no between-group differences were observed in BOLD signal changes associated with PE-signaling in the striatum. However, positive symptom severity was found to significantly correlate with the magnitudes of salience contrasts in default mode network nodes. Our results suggest that, in an observational environment, SZ patients may show an intact ability to activate striatal and cortical regions to rewarding and non-rewarding salient events. Furthermore, reduced deactivation of a hypothesized default mode network node for SZ participants with high levels of positive symptoms, following salient events, point to abnormalities in interactions of the salience network with other brain networks, and their potential importance to positive symptoms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mukesh Kumar ◽  
Sadhana Singh ◽  
Poonam Rana ◽  
Pawan Kumar ◽  
Tarun Sekhri ◽  
...  

Purpose: Patients with hyperthyroidism have frequent neuropsychiatric symptoms such as lack of attention, concentration, poor memory, impaired executive functions, depression, and anxiety. These neurocognitive impairments such as memory, attention, and executive functions appear to be associated with dysfunction in brain regions. This study was conducted to investigate the metabolic changes in the brain subcortical regions, i.e., posterior parietal cortex and dorsolateral prefrontal cortex (DLPFC), in patients with hyperthyroidism before and after antithyroid treatment using proton magnetic resonance spectroscopy (1H MRS).Materials and Methods: We collected neuropsychological and 1H MRS data from posterior parietal cortex and DLPFC, in both control (N = 30) and hyperthyroid (N = 30) patients. In addition, follow-up data were available for 19 patients treated with carbimazole for 30 weeks. The relative ratios of the neurometabolites were calculated using the Linear Combination Model (LCModel). Analysis of co-variance using Bonferroni correction was performed between healthy controls and hyperthyroid patients, and a paired t-test was applied in patients at baseline and follow-up. Spearman’s rank-order correlation was used to analyze bivariate associations between thyroid hormone levels and metabolite ratios, and the partial correlation analysis was performed between neuropsychological scores and metabolite ratios, with age and sex as covariates, in the patients before and after treatment.Results: Our results revealed a significant decrease in choline/creatine [glycerophosphocholine (GPC) + phosphocholine (PCh)/creatine (tCr)] in both the posterior parietal cortex and DLPFC in hyperthyroid patients, and these changes were reversible after antithyroid treatment. The posterior parietal cortex also showed significantly reduced glutamate/creatine (Glu/tCr), (glutamate + glutamine)/creatine (Glx/tCr), and increased glutathione/creatine (GSH/tCr) ratios in the hyperthyroid patients over control subjects. In DLPFC, only (N-acetyl aspartate + N-acetyl aspartyl-glutamate)/creatine (NAA + NAAG)/tCr was increased in the hyperthyroid patients. After antithyroid treatment, (GPC + PCh)/tCr increased, and Glx/tCr decreased in both brain regions in the patients at follow-up. Gln/tCr in the posterior parietal cortex was decreased in patients at follow-up. Interestingly, (GPC + PCh)/tCr in DLPFC showed a significantly inverse correlation with free tri-iodothyronine (fT3) in hyperthyroid patients at baseline, whereas NAA/tCr showed positive correlations with fT3 and free thyroxine (fT4) in hyperthyroid patients before and after antithyroid treatment, in the posterior parietal cortex. In DLPFC, only (NAA + NAAG)/tCr showed positive correlations with fT3 and fT4 in the patients before treatment.Conclusion: The overall findings suggest that all the brain metabolite changes were not completely reversed in the hyperthyroid patients after antithyroid treatment, even after achieving euthyroidism.


2021 ◽  
Author(s):  
Taylor B. Wise ◽  
Rebecca D. Burwell ◽  
Victoria L. Templer

Recent literature points to a potential link between the evolution of complex social behavior and the posterior parietal cortex (PPC) in primates including humans (Parkinson & Wheatley, 2013). Thus far, this theory has been overlooked in other highly social animals that may have also evolved due to social selective pressures. In rodents, there is limited knowledge on the involvement of the PPC on sociality, and most studies of such behavior are limited to understanding social preference. We investigated the role of the PPC through two experiments using the 3-Chamber Sociability and Social Novelty test in rats (Crawley, 2004). In Experiment 1, we used a standard 3-Chamber paradigm, which included two novel demonstrators. In Experiment 2, this paradigm was altered to increase the difference in familiarity between demonstrators such that one demonstrator was highly familiar to the subject and the other was entirely novel. Rats with pre-testing permanent neurotoxic lesions were compared to sham surgery control rats, and the same rats were used for both experiments. Experiments 1 and 2 showed that both groups of rats preferred general social interaction, suggesting no deficit in sociability following PPC damage, regardless of demonstrator identity. Further, experimental and control rats showed similar levels of novelty preference following PPC damage, with novelty preferences increasing in Experiment 2. We argue that heightened novelty preference in Experiment 2 may reflect the increased difference in familiarity between demonstrators. Within the confines of the 3-Chamber task, our results suggest that PPC function was not required for general sociability or social novelty recognition. Because the PPC is implicated in abstract cognition, we argue that existing social tests in rodents may not adequately measure the complex cognitive capacities thought to be supported by the PPC. Future studies should investigate the role of the PPC in social cognition by employing behavioral tasks that require higher cognitive demand rather than testing inherent preference for social partners. Outside of our investigation of the PPC, these results show that social novelty preference can be manipulated through changes in familiarity of demonstrators, and that rats can discriminate others social identities.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lavinia Carmen Uscătescu ◽  
Sarah Said-Yürekli ◽  
Lisa Kronbichler ◽  
Renate Stelzig-Schöler ◽  
Brandy-Gale Pearce ◽  
...  

AbstractWe computed intrinsic neural timescales (INT) based on resting-state functional magnetic resonance imaging (rsfMRI) data of healthy controls (HC) and patients with schizophrenia spectrum disorder (SZ) from three independently collected samples. Five clusters showed decreased INT in SZ compared to HC in all three samples: right occipital fusiform gyrus (rOFG), left superior occipital gyrus (lSOG), right superior occipital gyrus (rSOG), left lateral occipital cortex (lLOC) and right postcentral gyrus (rPG). In other words, it appears that sensory information in visual and posterior parietal areas is stored for reduced lengths of time in SZ compared to HC. Finally, we found that symptom severity appears to modulate INT of these areas in SZ.


Sign in / Sign up

Export Citation Format

Share Document