parietal lobule
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 84)

H-INDEX

55
(FIVE YEARS 3)

2021 ◽  
Vol 15 ◽  
Author(s):  
Wen Chen ◽  
Hao Hu ◽  
Qian Wu ◽  
Lu Chen ◽  
Jiang Zhou ◽  
...  

Purpose: Thyroid-associated ophthalmopathy (TAO) is a debilitating and sight-threatening autoimmune disease that severely impairs patients’ quality of life. Besides the most common ophthalmic manifestations, the emotional and psychiatric disturbances are also usually observed in clinical settings. This study was to investigate the interhemispheric functional connectivity alterations in TAO patients using resting-state functional magnetic resonance imaging (rs-fMRI).Methods: Twenty-eight TAO patients and 22 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic voxel-mirrored homotopic connectivity (VMHC) values were calculated and compared between the two groups. A linear support vector machine (SVM) classifier was used to examine the performance of static and dynamic VMHC differences in distinguishing TAOs from HCs.Results: Compared with HCs, TAOs showed decreased static VMHC in lingual gyrus (LG)/calcarine (CAL), middle occipital gyrus, postcentral gyrus, superior parietal lobule, inferior parietal lobule, and precuneus. Meanwhile, TAOs demonstrated increased dynamic VMHC in orbitofrontal cortex (OFC). In TAOs, static VMHC in LG/CAL was positively correlated with visual acuity (r = 0.412, P = 0.036), whilst dynamic VMHC in OFC was positively correlated with Hamilton Anxiety Rating Scale (HARS) score (r = 0.397, P = 0.044) and Hamilton Depression Rating Scale (HDRS) score (r = 0.401, P = 0.042). The SVM model showed good performance in distinguishing TAOs from HCs (area under the curve, 0.971; average accuracy, 94%).Conclusion: TAO patients had altered static and dynamic VMHC in the occipital, parietal, and orbitofrontal areas, which could serve as neuroimaging prediction markers of TAO.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0362-21.2021
Author(s):  
Marina De Vitis ◽  
Marta Tabanelli ◽  
Rossella Breveglieri ◽  
Matteo Filippini ◽  
Claudio Galletti ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Yin ◽  
Chao Zhao ◽  
Yang Li ◽  
Xiaoyi Liu ◽  
Lei Chen ◽  
...  

Purpose: Comprehensive and longitudinal brain analysis is of great significance for understanding the pathological changes of antipsychotic drug treatment in patients with schizophrenia. This study aimed to investigate the changes of structure, function, and network properties in patients with first-episode schizophrenia (FES) after antipsychotic therapy and their relationship with clinical symptoms.Materials and Methods: A total of 30 patients diagnosed with FES and 30 healthy subjects matched for sex and age were enrolled in our study. Patients at baseline were labeled as antipsychotic-naive first-episode schizophrenia (AN-FES), and patients after antipsychotic treatment were labeled as antipsychotic treatment first-episode schizophrenia (AT-FES). The severity of illness was measured by using the PANSS and CGI score. Structural and functional MRI data were also performed. Differences in GMV, ALFF, and ReHo between the FES group and healthy control group were tested using a voxel-wise two-sample t-test, and the comparison of AN-FES group and AT-FES group was evaluated by paired-sample t-test.Results: After the 1-year follow-up, the FES patients showed increased GMV in the right cerebellum, right inferior temporal gyrus, left middle frontal gyrus, parahippocampal gyrus, bilateral inferior parietal lobule, and reduced GMV in the left occipital lobe, gyrus rectus, right orbital frontal cortex. The patients also showed increased ALFF in the medial superior frontal gyrus and right precentral gyrus. For network properties, the patients showed reduced characteristic path length and increased global efficiency. The GMV of the right inferior parietal lobule was negatively correlated with the clinical symptoms.Conclusions: Our study showed that the antipsychotic treatment contributed to the structural alteration and functional improvement, and the GMV alteration may be associated with the improvement of clinical symptoms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Wang ◽  
Wenjing Zhang ◽  
Xin Wu ◽  
Xinmei Luo ◽  
Siyi Li ◽  
...  

The current study is to characterize the alterations of peripheral cytokines and anatomical brain changes, and their relationships in untreated nasopharyngeal carcinoma (NPC) patients with depressive symptoms. Twenty-nine newly diagnosed NPC patients without any treatment and 46 matched healthy comparisons were recruited, scanned with high-resolution T1 images and assessed psychologically using Hamilton Rating Scale for Depression (HAMD). Serum levels of interleukin-1 beta (IL-1β), IL-2, IL-6, IL-8, IL-10, interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-β) were measured by quantitative chemiluminescence assay. Inter-group comparisons of anatomical brain measures were performed, and regions with significant inter-group differences were correlated to HAMD scores and cytokines in NPC patients. A subgroup analysis especially within NPC patients with depression was conducted to precisely characterize the associations among serum cytokines, brain changes and depressive symptoms. Relative to healthy subjects, NPC patients showed significantly decreased cortical thickness in the left parahippocampal gyrus, increased surface area in the right superior parietal lobule and precentral gyrus, and increased gray matter volume in the right postcentral gyrus, bilateral caudate nucleus and right thalamus, as well as significantly elevated IL-1β, IL-2 and IL-10. The elevated IL-2 and IL-10 were negatively correlated with surface area in right superior parietal lobule, whilst IL-1β level was positively correlated to HAMD scores. In patients with depression, specific brain changes and evaluated IL-1β were identified, and the IL-1β interacted with right precentral gyrus to significantly affect the depressive symptoms. Our findings provide novel evidence indicating potential effects of inflammation on brain structure and behavior in NPC patients.


2021 ◽  
Author(s):  
Hui Wang ◽  
Zeng-Hui Ma ◽  
Ling-Zi Xu ◽  
Liu Yang ◽  
Zhao-Zheng Ji ◽  
...  

Abstract Background Accumulating structural Magnetic Resonance Imaging (sMRI) studies have showed atypicalities in developmental changes of structural regional brain in autism, with largely inconsistent results. Methods The current study investigated the brain structural abnormal features of autistic individuals aged 6~30 years. We included 52 autism individuals and 50 age, gender, and IQ matched typically developing individuals (TD), who were divided into three groups: childhood (6-12 years old), adolescent (13-18 years old) and adulthood (19-30 years old). Whole brain volume and Voxel-Based Morphometry (VBM) analyses were employed on the sMRI data collected from our participants. Results We found no significant difference in the volume of whole brain, gray matter and white matter between autism and TD groups of the three age groups. For VBM analyses, the volumes of gray matter in right superior temporal gyrus and right inferior parietal lobule in children autism group were smaller than those in TD group; the volume of gray matter in left inferior parietal lobule in adolescent autism group was larger than that in TD group; the volume of gray matter in right middle occipital gyrus in adult autism group was larger than that in TD group, and the gray matter in left posterior cingulate gyrus was smaller than that in TD group. Conclusions Findings suggest autism individuals showed different atypical brain regions of gray matter volume in childhood, adolescent, and adulthood relative to their normal peers respectively, indiciating that it is essential to take developmental perspectives into consideration when exploring brain structural abnormalities in autism.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-Man Yu ◽  
Lin-Lin Qiu ◽  
Hai-Xia Huang ◽  
Xiang Zuo ◽  
Zhen-He Zhou ◽  
...  

Abstract Background Schizophrenia (SZ) and obsessive-compulsive disorder (OCD) share many demographic characteristics and severity of clinical symptoms, genetic risk factors, pathophysiological underpinnings, and brain structure and function. However, the differences in the spontaneous brain activity patterns between the two diseases remain unclear. Here this study aimed to compare the features of intrinsic brain activity in treatment-naive participants with SZ and OCD and to explore the relationship between spontaneous brain activity and the severity of symptoms. Methods In this study, 22 treatment-naive participants with SZ, 27 treatment-naive participants with OCD, and sixty healthy controls (HC) underwent a resting-state functional magnetic resonance imaging (fMRI) scan. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and degree of centrality (DC) were performed to examine the intrinsic brain activity of participants. Additionally, the relationships among spontaneous brain activity, the severity of symptoms, and the duration of illness were explored in SZ and OCD groups. Results Compared with SZ group and HC group, participants with OCD had significantly higher ALFF in the right angular gyrus and the left middle frontal gyrus/precentral gyrus and significantly lower ALFF in the left superior temporal gyrus/insula/rolandic operculum and the left postcentral gyrus, while there was no significant difference in ALFF between SZ group and HC group. Compared with HC group, lower ALFF in the right supramarginal gyrus/inferior parietal lobule and lower DC in the right lingual gyrus/calcarine fissure and surrounding cortex of the two patient groups, higher ReHo in OCD group and lower ReHo in SZ group in the right angular gyrus/middle occipital gyrus brain region were documented in the present study. DC in SZ group was significantly higher than that in HC group in the right inferior parietal lobule/angular gyrus, while there were no significant DC differences between OCD group and HC group. In addition, ALFF in the left postcentral gyrus were positively correlated with positive subscale score (r = 0.588, P = 0.013) and general psychopathology subscale score (r = 0.488, P = 0.047) respectively on the Positive and Negative Syndrome Scale (PANSS) in SZ group. ALFF in the left superior temporal gyrus/insula/rolandic operculum of participants with OCD were positively correlated with compulsion subscale score (r = 0.463, P = 0.030) on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). The longer the illness duration in SZ group, the smaller the ALFF of the left superior temporal gyrus/insula/rolandic operculum (Rho = 0.-492, P = 0.020). The longer the illness duration in OCD group, the higher the ALFF of the right supramarginal gyrus/inferior parietal lobule (Rho = 0.392, P = 0.043) and the left postcentral gyrus (Rho = 0.385, P = 0.048), and the lower the DC of the right inferior parietal lobule/angular gyrus (Rho = − 0.518, P = 0.006). Conclusion SZ and OCD show some similarities in spontaneous brain activity in parietal and occipital lobes, but exhibit different patterns of spontaneous brain activity in frontal, temporal, parietal, occipital, and insula brain regions, which might imply different underlying neurobiological mechanisms in the two diseases. Compared with OCD, SZ implicates more significant abnormalities in the functional connections among brain regions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xueying He ◽  
Jie Hong ◽  
Qian Wang ◽  
Yanan Guo ◽  
Ting Li ◽  
...  

The purpose of this study is to investigate brain functional changes in patients with intermittent exotropia (IXT) by analyzing the amplitude of low-frequency fluctuation (ALFF) of brain activity and functional connectivity (FC) using resting-state functional magnetic resonance imaging (rs-fMRI). There were 26 IXT patients and 22 age-, sex-, education-, and handedness-matched healthy controls (HCs) enrolled who underwent rs-fMRI. The ALFF, fractional ALFF (fALFF) values in the slow 4 and slow 5 bands, and FC values were calculated and compared. The correlations between ALFF/fALFF values in discrepant brain regions and clinical features were evaluated. Compared with HCs, ALFF/fALFF values were significantly increased in the right angular gyrus (ANG), supramarginal gyrus (SMG), inferior parietal lobule (IPL), precentral gyrus (PreCG), and the bilateral inferior frontal gyri (IFG), and decreased in the right precuneus gyrus (PCUN), left middle occipital gyrus (MOG), and postcentral gyrus (PoCG) in IXT patients. The Newcastle Control Test score was negatively correlated with ALFF values in the right IFG (r = −0.738, p < 0.001). The duration of IXT was negatively correlated with ALFF values in the right ANG (r = −0.457, p = 0.049). Widespread increases in FC were observed between brain regions, mainly including the right cuneus (CUN), left superior parietal lobule (SPL), right rolandic operculum (ROL), left middle temporal gyrus (MTG), left IFG, left median cingulate gyrus (DCG), left PoCG, right PreCG, and left paracentral gyrus (PCL) in patients with IXT. No decreased FC was observed. Patients with IXT exhibited aberrant intrinsic brain activities and FC in vision- and eye movement-related brain regions, which extend current understanding of the neuropathological mechanisms underlying visual and oculomotor impairments in IXT patients.


2021 ◽  
Author(s):  
Nira Saporta ◽  
Dirk Scheele ◽  
Jana Lieberz ◽  
Michael Nevat ◽  
Alisa Kanterman ◽  
...  

Lonely people evaluate social exchanges and relationships negatively and display difficulties in interpersonal interaction. Interpersonal synchronization is crucial for achieving positive interactions, promoting affinity, closeness, and satisfaction. However, little is known about lonely individuals ability to synchronize and about the activity in the lonely brain while synchronizing. In the present neuroimaging study, 64 participants engaged in interpersonal synchronization, using a novel paradigm involving real dyadic interaction. Results show that high loneliness individuals exhibited a reduced ability to adapt their movement to their partners movement. Intriguingly, during periods in which participants adapted their movement, high loneliness individuals showed increased activation in the observation-execution (OE) system, specifically in the inferior frontal gyrus (IFG) and the inferior parietal lobule (IPL). They did not show increased activation in the dmPFC, which in the context of synchronization was suggested to be related to gap-monitoring. Based on these findings, we propose a model according to which lonely people may require a stronger activation of their OE system for movement alignment to compensate for some deficiency in their ability to synchronize. However, despite this hyper-activation, they still suffer from reduced synchronization capacity. Consequently, synchronization may be a relevant intervention area for the amelioration of chronic loneliness.


Sign in / Sign up

Export Citation Format

Share Document