Coding of Repetition Noise in the Cochlear Nucleus in Cat

Author(s):  
G. Boerger
Keyword(s):  
Author(s):  
Robert V. Shannon

The auditory brainstem implant (ABI) is a surgically implanted device to electrically stimulate auditory neurons in the cochlear nucleus complex of the brainstem in humans to restore hearing sensations. The ABI is similar in function to a cochlear implant, but overall outcomes are poorer. However, recent applications of the ABI to new patient populations and improvements in surgical technique have led to significant improvements in outcomes. While the ABI provides hearing benefits to patients, the outcomes challenge our understanding of how the brain processes neural patterns of auditory information. The neural pattern of activation produced by an ABI is highly unnatural, yet some patients achieve high levels of speech understanding. Based on a meta-analysis of ABI surgeries and outcomes, a theory is proposed of a specialized sub-system of the cochlear nucleus that is critical for speech understanding.


1988 ◽  
Vol 60 (1) ◽  
pp. 1-29 ◽  
Author(s):  
E. D. Young ◽  
J. M. Robert ◽  
W. P. Shofner

1. The responses of neurons in the ventral cochlear nucleus (VCN) of decerebrate cats are described with regard to their regularity of discharge and latency. Regularity is measured by estimating the mean and standard deviation of interspike intervals as a function of time during responses to short tone bursts (25 ms). This method extends the usual interspike-interval analysis based on interval histograms by allowing the study of temporal changes in regularity during transient responses. The coefficient of variation (CV), equal to the ratio of standard deviation to mean interspike interval, is used as a measure of irregularity. Latency is measured as the mean and standard deviation of the latency of the first spike in response to short tone bursts, with 1.6-ms rise times. 2. The regularity and latency properties of the usual PST histogram response types are shown. Five major PST response type classes are used: chopper, primary-like, onset, onset-C, and unusual. The presence of a prepotential in a unit's action potentials is also noted; a prepotential implies that the unit is recorded from a bushy cell. 3. Units with chopper PST histograms give the most regular discharge. Three varieties of choppers are found. Chop-S units (regular choppers) have CVs less than 0.35 that are approximately constant during the response; chop-S units show no adaptation of instantaneous rate, as measured by the inverse of the mean interspike interval. Chop-T units have CVs greater than 0.35, show an increase in irregularity during the response and show substantial rate adaptation. Chop-U units have CVs greater than 0.35, show a decrease in irregularity during the response, and show a variety of rate adaptation behaviors, including negative adaptation (an increase in rate during a short-tone response). Irregular choppers (chop-T and chop-U units) rarely have CVs greater than 0.5. Choppers have the longest latencies of VCN units; all three groups have mean latencies at least 1 ms longer than the shortest auditory nerve (AN) fiber mean latencies. 4. Chopper units are recorded from stellate cells in VCN (35, 42). Our results for chopper units suggest a model for stellate cells in which a regularly firing action potential generator is driven by the summation of the AN inputs to the cell, where the summation is low-pass filtered by the membrane capacitance of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)


1975 ◽  
Vol 38 (2) ◽  
pp. 418-429 ◽  
Author(s):  
L. M. Aitkin ◽  
J. Boyd

The responses of 146 cerebellar neurons to tone stimuli were studied in 29 cats anesthetized with chloralose-urethan and in 7 decerebrate preparations. Units were classified as onset or sustained firing. Onset spikes occurred on stimulation of either ear and showed binaural facilitation, while sustained discharges were frequently only excited by monaural stimulation. The latent periods of sustained discharges appeared to be shorter than those of onset responses, and sustained discharges were also more sharply tuned than the onset units. Evidence was presented suggesting that onset responses reflected input from the inferior colliculus and sustained responses, the cochlear nucleus. The sterotyped facilitatory behavior of onset units suggested that a maximal discharge might occur if sounds were of equal intensity at each ear; 26 neurons were examined with variable interaural time or intensity differences and 10 of these exhibited maximal firing when the interaural time and intensity difference was zero--i.e., if the sound was located directly in front of the head.


2021 ◽  
Vol 403 ◽  
pp. 108187
Author(s):  
Donald. A Godfrey ◽  
William B. Farms ◽  
Sharon Polensek ◽  
Jon D. Dunn ◽  
Timothy G. Godfrey

2012 ◽  
Vol 90 (10) ◽  
pp. 1924-1931 ◽  
Author(s):  
Tetsuji Sekiya ◽  
Agneta Viberg ◽  
Ken Kojima ◽  
Tatsunori Sakamoto ◽  
Takayuki Nakagawa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document