inferior colliculus
Recently Published Documents


TOTAL DOCUMENTS

1944
(FIVE YEARS 146)

H-INDEX

102
(FIVE YEARS 6)

eLife ◽  
2022 ◽  
Vol 10 ◽  
Author(s):  
Hannah M Oberle ◽  
Alexander N Ford ◽  
Deepak Dileepkumar ◽  
Jordyn Czarny ◽  
Pierre F Apostolides

Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These ‘descending’ pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons’ moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway’s role in plasticity and perceptual learning.


2021 ◽  
pp. 088307382110258
Author(s):  
Ahmed Abdel Khalek Abdel Razek ◽  
Mohamed Ezz El Regal ◽  
Mortada El-Shabrawi ◽  
Mohamed Moustafa Abdeltawwab ◽  
Ahmed Megahed ◽  
...  

Aim: To evaluate the role of diffusion tensor imaging of the auditory pathway in patients with Crigler Najjar syndrome type I and its relation to auditory brainstem response. Methods: Prospective study was done including 12 patients with Crigler Najjar syndrome type I and 10 age- and sex-matched controls that underwent diffusion tensor imaging of brain. Mean diffusivity and fractional anisotropy at 4 regions of the brain and brainstem on each side were measured and correlated with the results of auditory brainstem response for patients. Results: There was significantly higher mean diffusivity of cochlear nucleus, superior olivary nucleus, inferior colliculus, and auditory cortex of patients versus controls on both sides for all regions ( P = .001). The fractional anisotropy of cochlear nucleus, superior olivary nucleus, inferior colliculus, and auditory cortex of patients versus controls was significantly lower, with P values of, respectively, .001, .001, .003, and .001 on the right side and .001, .001, .003, and .001 on left side, respectively. Also, a negative correlation was found between the maximum bilirubin level and fractional anisotropy of the left superior olivary nucleus and inferior colliculus of both sides. A positive correlation was found between the mean diffusivity and auditory brainstem response wave latency of the right inferior colliculus and left cochlear nucleus. The fractional anisotropy and auditory brainstem response wave latency of the right superior olivary nucleus, left cochlear nucleus, and inferior colliculus of both sides were negatively correlated. Conclusion: Diffusion tensor imaging can detect microstructural changes in the auditory pathway in Crigler Najjar syndrome type I that can be correlated with auditory brainstem response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seung-Goo Kim ◽  
Jöran Lepsien ◽  
Thomas Hans Fritz ◽  
Toralf Mildner ◽  
Karsten Mueller

2021 ◽  
Vol 15 ◽  
Author(s):  
Mark N. Wallace ◽  
Trevor M. Shackleton ◽  
Zoe Thompson ◽  
Alan R. Palmer

We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nathiya Vaithiyalingam Chandra Sekaran ◽  
Meena S. Deshpande ◽  
Baher A. Ibrahim ◽  
Gang Xiao ◽  
Yoshitaka Shinagawa ◽  
...  

The auditory cortex sends massive projections to the inferior colliculus, but the organization of this pathway is not yet well understood. Previous work has shown that the corticocollicular projection emanates from both layers 5 and 6 of the auditory cortex and that neurons in these layers have different morphological and physiological properties. It is not yet known in the mouse if both layer 5 and layer 6 project bilaterally, nor is it known if the projection patterns differ based on projection location. Using targeted injections of Fluorogold into either the lateral cortex or dorsal cortex of the inferior colliculus, we quantified retrogradely labeled neurons in both the left and right lemniscal regions of the auditory cortex, as delineated using parvalbumin immunostaining. After dorsal cortex injections, we observed that approximately 18–20% of labeled cells were in layer 6 and that this proportion was similar bilaterally. After lateral cortex injections, only ipsilateral cells were observed in the auditory cortex, and they were found in both layer 5 and layer 6. The ratio of layer 5:layer 6 cells after lateral cortex injection was similar to that seen after dorsal cortex injection. Finally, injections of different tracers were made into the two inferior colliculi, and an average of 15–17% of cells in the auditory cortex were double-labeled, and these proportions were similar in layers 5 and 6. These data suggest that (1) only the dorsal cortex of the inferior colliculus receives bilateral projections from the auditory cortex, (2) both the dorsal and lateral cortex of the inferior colliculus receive similar layer 5 and layer 6 auditory cortical input, and (3) a subpopulation of individual neurons in both layers 5 and 6 branch to innervate both dorsal cortices of the inferior colliculus.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lutz Kettler ◽  
Hicham Sid ◽  
Carina Schaub ◽  
Katharina Lischka ◽  
Romina Klinger ◽  
...  

AP-2 is a family of transcription factors involved in many aspects of development, cell differentiation, and regulation of cell growth and death. AP-2δ is a member of this group and specific gene expression patterns are required in the adult mouse brain for the development of parts of the inferior colliculus (IC), as well as the cortex, dorsal thalamus, and superior colliculus. The midbrain is one of the central areas in the brain where multimodal integration, i.e., integration of information from different senses, occurs. Previous data showed that AP-2δ-deficient mice are viable but due to increased apoptosis at the end of embryogenesis, lack part of the posterior midbrain. Despite the absence of the IC in AP-2δ-deficient mice, these animals retain at least some higher auditory functions. Neuronal responses to tones in the neocortex suggest an alternative auditory pathway that bypasses the IC. While sufficient data are available in mammals, little is known about AP-2δ in chickens, an avian model for the localization of sounds and the development of auditory circuits in the brain. Here, we identified and localized AP-2δ expression in the chicken midbrain during embryogenesis. Our data confirmed the presence of AP-2δ in the inferior colliculus and optic tectum (TeO), specifically in shepherd’s crook neurons, which are an essential component of the midbrain isthmic network and involved in multimodal integration. AP-2δ expression in the chicken midbrain may be related to the integration of both auditory and visual afferents in these neurons. In the future, these insights may allow for a more detailed study of circuitry and computational rules of auditory and multimodal networks.


2021 ◽  
pp. 108357
Author(s):  
Ambika Prasad Mishra ◽  
Fei Peng ◽  
Kongyan Li ◽  
Nicol Harper ◽  
Jan W.H. Schnupp

2021 ◽  
Vol 15 ◽  
Author(s):  
Hisataka Fujimoto ◽  
Eiji Notsu ◽  
Ryo Yamamoto ◽  
Munenori Ono ◽  
Hiroyuki Hioki ◽  
...  

The medial geniculate body (MGB) is the thalamic center of the auditory lemniscal pathway. The ventral division of MGB (MGV) receives excitatory and inhibitory inputs from the inferior colliculus (IC). MGV is involved in auditory attention by processing descending excitatory and inhibitory inputs from the auditory cortex (AC) and reticular thalamic nucleus (RTN), respectively. However, detailed mechanisms of the integration of different inputs in a single MGV neuron remain unclear. Kv4.2 is one of the isoforms of the Shal-related subfamily of potassium voltage-gated channels that are expressed in MGB. Since potassium channel is important for shaping synaptic current and spike waveforms, subcellular distribution of Kv4.2 is likely important for integration of various inputs. Here, we aimed to examine the detailed distribution of Kv4.2, in MGV neurons to understand its specific role in auditory attention. We found that Kv4.2 mRNA was expressed in most MGV neurons. At the protein level, Kv4.2-immunopositive patches were sparsely distributed in both the dendrites and the soma of neurons. The postsynaptic distribution of Kv4.2 protein was confirmed using electron microscopy (EM). The frequency of contact with Kv4.2-immunopositive puncta was higher in vesicular glutamate transporter 2 (VGluT2)-positive excitatory axon terminals, which are supposed to be extending from the IC, than in VGluT1-immunopositive terminals, which are expected to be originating from the AC. VGluT2-immunopositive terminals were significantly larger than VGluT1-immunopositive terminals. Furthermore, EM showed that the terminals forming asymmetric synapses with Kv4.2-immunopositive MGV dendritic domains were significantly larger than those forming synapses with Kv4.2-negative MGV dendritic domains. In inhibitory axons either from the IC or from the RTN, the frequency of terminals that were in contact with Kv4.2-positive puncta was higher in IC than in RTN. In summary, our study demonstrated that the Kv4.2-immunopositive domains of the MGV dendrites received excitatory and inhibitory ascending auditory inputs preferentially from the IC, and not from the RTN or cortex. Our findings imply that time course of synaptic current and spike waveforms elicited by IC inputs is modified in the Kv4.2 domains.


Sign in / Sign up

Export Citation Format

Share Document