Sedimentary Porous Materials as a Realization of a Stochastic Process

1976 ◽  
pp. 63-86 ◽  
Author(s):  
F. W. Preston ◽  
J. C. Davis
2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

1964 ◽  
Author(s):  
John P. Hornseth ◽  
Walter J. Huebner ◽  
William H. Pearson

Nature China ◽  
2013 ◽  
Author(s):  
Felix Cheung
Keyword(s):  

2018 ◽  
Vol 4 (4) ◽  
pp. 52-63
Author(s):  
V. Yu. Shumskaya ◽  
S. F. Zhandarov ◽  
L. A. Kalinin ◽  
L. F. Ivanov ◽  
V. V. Snezhkov ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 406-418
Author(s):  
Mhelmar A‎. ‎Labendia ◽  
Jayrold P‎. ‎Arcede

2020 ◽  
Vol 51 (16) ◽  
pp. 1445-1454
Author(s):  
Lei-Lei Liu ◽  
Feng-Xian Sun ◽  
Xin-Lin Xia

Sign in / Sign up

Export Citation Format

Share Document