water interface
Recently Published Documents


TOTAL DOCUMENTS

9161
(FIVE YEARS 1076)

H-INDEX

138
(FIVE YEARS 13)

2022 ◽  
Vol 124 ◽  
pp. 107352
Author(s):  
Haobo Jin ◽  
Yi Sun ◽  
Jiajing Pan ◽  
Yue Fang ◽  
Yongguo Jin ◽  
...  

2022 ◽  
Author(s):  
Ranjan Sinha ◽  
Shalivahan Shrivastava

Abstract Saltwater intrusion and up coning in coastal aquifer is a common phenomenon brought either due to flow of seawater into freshwater aquifer originally caused by groundwater abstraction near the coast or due to wrong casing design of water wells. This necessitates a study of aquifer disposition along with demarcation of fresh water saline water interface of Kasai River basin, Eastern India to determine the depth to freshwater and recommend the borehole design. In this study geophysical and hydrogeological techniques were employed to map to demarcate fresh and saline water interface. The phenomenon of saline water up coning is also noticed and accordingly water wells have been designed. For the said study, twenty two geophysical logs, sixty five lithological logs and hydrogeological data of eighty eight sites spread across Kasai River basin were utilized. The study shows that there are three regional aquifers exist in the area. It is recommended that water wells in the study area is to be constructed with artificial gravel packing of size 2-3mm and screen slot size is suggested to be 1.2mm. Since the sites are affected with saline water, hence isolation of zone is mandatory with proper cementing material or packer. This research work is able to develop a design model for the boreholes located in the area. The work as a whole will serve as a vital role in scientific management of groundwater resource and enable the rational planning in coastal aquifers so as to avoid fresh and saline water intermixing and up-coning.


2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Wendong Wang ◽  
Gaurav Gardi ◽  
Paolo Malgaretti ◽  
Vimal Kishore ◽  
Lyndon Koens ◽  
...  

A local measure based on the Shannon entropy establishes connections among information, structures, and interactions.


2022 ◽  
Author(s):  
Christian A. Paternina

The surfactant injection is considered as the EOR (Enhanced Oil Recovery) with the highest potential to recover oil from reservoirs due to its ability to reduce interfacial forces into the porous medium. However, the adsorption of this type of chemical on the surface of rocks is the main problem when a surfactant injection project is applied since the surfactant molecules would rather be placed on rock minerals instead of being the oil–water interface. Based on this fact, this chapter would be discussed the significance of surfactant injection as an EOR method, the types of surfactants used, the main mechanism and parameters involved in the surfactant adsorption on the rock, and its consequences in oil recovery. Likewise, the addition of nanoparticles to inhibit the adsorption of surfactants is another topic that will be covered as a novel technology to improve the efficiency of the EOR process.


2022 ◽  
Author(s):  
Haoyu Jiang ◽  
Yingyao He ◽  
Yiqun Wang ◽  
Sheng Li ◽  
Bin Jiang ◽  
...  

Abstract. The presence of organic sulfur compounds (OSs) at the water surface, acting as organic surfactants, may influence the air-water interaction and contribute to new particle formation in the atmosphere. However, the impact of ubiquitous anthropogenic pollutant emissions, such as SO2 and polycyclic aromatic hydrocarbons (PAHs) on the formation of OSs at the air-water interface still remains unknown. Here, we observe large amounts of OSs formation in presence of SO2, upon irradiation of aqueous solutions containing typical PAHs such as pyrene (PYR), fluoranthene (FLA), and phenanthrene (PHE), as well as dimethylsulfoxide (DMSO). We observe rapid formation of several gaseous OSs from light-induced heterogeneous reactions of SO2 with either DMSO or a mixture of PAHs/DMSO, and some of these OSs (e.g. methanesulfonic acid) are well established secondary organic aerosol (SOA) precursors. A myriad of OSs and unsaturated compounds are produced and detected in the aqueous phase. The tentative reaction pathways are supported by theoretical calculations of the reaction Gibbs energies. Our findings provide new insights into potential sources and formation pathways of OSs occurring at the water (sea, lake, river) surface, that should be considered in future model studies to better represent the air-water interaction and SOA formation processes.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziming Wang ◽  
Andy Berbille ◽  
Yawei Feng ◽  
Site Li ◽  
Laipan Zhu ◽  
...  

AbstractMechanochemistry has been studied for some time, but research on the reactivity of charges exchanged by contact-electrification (CE) during mechanical stimulation remains scarce. Here, we demonstrate that electrons transferred during the CE between pristine dielectric powders and water can be utilized to directly catalyze reactions without the use of conventional catalysts. Specifically, frequent CE at Fluorinated Ethylene Propylene (FEP) - water interface induces electron-exchanges, thus forming reactive oxygen species for the degradation of an aqueous methyl orange solution. Contact-electro-catalysis, by conjunction of CE, mechanochemistry and catalysis, has been proposed as a general mechanism, which has been demonstrated to be effective for various dielectric materials, such as Teflon, Nylon-6,6 and rubber. This original catalytic principle not only expands the range of catalytic materials, but also enables us to envisage catalytic processes through mechano-induced contact-electrification.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 485
Author(s):  
Hiroki Matsubara ◽  
Rikako Mori ◽  
Eisuke Ohtomi

We investigated the wetting transitions of tetradecane and hexadecane droplets in dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB), and hexadecyltrimethylammonium bromide (C16TAB) aqueous solutions. By varying the surfactant concentration, the formation of mixed monolayers of a surfactant and an alkane was observed at the air–water interface. Depending on the combination of surfactant and alkane, these wetting monolayers underwent another thermal phase transition upon cooling either to a frozen mixed monolayer (S1) or a bilayer structure composed of a solid monolayer of a pure alkane rested on a liquid-like mixed monolayer (S2). Based on the phase diagrams determined by phase modulation ellipsometry, the difference in the morphology of the nucleated S1 and S2 phase domains was also investigated using Brewster angle microscopy. Domains of the S1 phase were relatively small and highly branched, whereas those of the S2 phase were large and circular. The difference in domain morphology was explained by the competition of the domain line tension and electrostatic dipole interactions between surfactant molecules in the domains.


Sign in / Sign up

Export Citation Format

Share Document