Flow Visualization Study of Vortex Breakdown on a 65° Delta Wing in Dynamic Motion Regime

1992 ◽  
pp. 260-264
Author(s):  
G. Guglieri ◽  
M. Onorato ◽  
F. Quagliotti
AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 567-569
Author(s):  
Roy Y. Myose ◽  
Boon-Kiat Lee ◽  
Shigeo Hayashibara ◽  
L. S. Miller

2003 ◽  
Vol 34 (5) ◽  
pp. 651-654 ◽  
Author(s):  
J. J. Wang ◽  
Q. S. Li ◽  
J. Y. Liu

2014 ◽  
Vol 27 (3) ◽  
pp. 521-530 ◽  
Author(s):  
Jian Liu ◽  
Haisheng Sun ◽  
Zhitao Liu ◽  
Zhixiang Xiao

2018 ◽  
Author(s):  
Setyawan Bekti Wibowo ◽  
Sutrisno ◽  
Tri Agung Rohmat ◽  
Zainuri Anwar ◽  
Firdaus R. Syadi ◽  
...  

Author(s):  
Christian Kasper ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Jochen Gier

The influence of secondary flows on the performance of turbines has been investigated in great detail in the last decades. The interaction of vortices with following blade rows has been identified to be one of the loss mechanisms within a turbo-machine. This paper presents for the first time detailed flow visualization photographs of the interaction of the vane passage vortex with the rotor. The appearance vortex breakdown could be identified before and within the rotating passage of the turbine. The measurements were taken in a vertical water channel. Water is used instead of air because the flow visualization can be realised very easily with injected ink. For different relative positions of rotor to stator a series of photographs were taken. With an image editing process the average and the pixel RMS were calculated for each relative position. The pixel RMS is a useful indicator to identify highly turbulent regions in the flow field. The photographs of the vortex breakdown show spots of high pixel RMS which are associated with very high turbulence and therefore can be regarded as sources of loss. Insight is gained into the nature of the passage vortex breakdown mechanisms as follows: first the pressure wave of the rotor stretches the vortex causing a spiral vortex instability, then the vortex interacts with the leading edge as it attempts to cut the vortex. In the stagnation region of the blade a bubble type instability forms, expands and then convects through the rotor. The absolute trajectory of the vortex fluid reveals that it exchanges no work with the rotor.


1986 ◽  
Vol 29 (9) ◽  
pp. 2773-2773
Author(s):  
F. M. Payne ◽  
R. C. Nelson ◽  
T. T. Ng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document