Control of vortex breakdown on a delta wing by leading edge blowing and suction

1994 ◽  
Author(s):  
H.-Q. Yang
Author(s):  
Renac Florent ◽  
Molton Pascal ◽  
Barberis Didier

The purpose of this study is to construct and test an experimental device to control vortex on a delta wing. The model has a root chord of c = 690mm and a sweep angle of Λ = 60°. The control system is based on four rectangular slits 50 mm long and 0.2 mm wide running along the leading edge. This configuration produces jets normal to the leading edge. The mass flow rates and frequencies of injection can be varied independently. The results are shown in the form of surface flow visualizations, with the skin friction pattern exhibited by oil flow visualization, and the laminar-to-turbulent transition by acenaphthene. Mean and instantaneous surface pressure distributions were determined with Kulite™ sensors and the velocity field was determined by 3D laser Doppler velocimetry (LDV) measurements. Control device efficiencies were evaluated by laser sheet visualization.


Author(s):  
Eric D. Robertson ◽  
Varun Chitta ◽  
D. Keith Walters ◽  
Shanti Bhushan

Using computational methods, an investigation was performed on the physical mechanisms leading to vortex breakdown in high angle of attack flows over delta wing geometries. For this purpose, the Second International Vortex Flow Experiment (VFE-2) 65° sweep delta wing model was studied at a root chord Reynolds number (Recr) of 6 × 106 at various angles of attack. The open-source computational fluid dynamics (CFD) solver OpenFOAM was used in parallel with the commercial CFD solver ANSYS® FLUENT. For breadth, a variety of classic closure models were applied, including unsteady Reynolds-averaged Navier-Stokes (URANS) and detached eddy simulation (DES). Results for all cases are analyzed and flow features are identified and discussed. The results show the inception of a pair of leading edge vortices originating at the apex for all models used, and a region of steady vortical structures downstream in the URANS results. However, DES results show regions of massively separated helical flow which manifests after vortex breakdown. Analysis of turbulence quantities in the breakdown region gives further insight into the mechanisms leading to such phenomena.


2017 ◽  
Author(s):  
Rowan Eveline Muir ◽  
Ignazio Maria Viola

1AbstractRecent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. A well documented example of an LEV is that generated by aircraft with highly swept, delta shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge will serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, the wing of a common swift Apus apus is simplified to a model with swept wings and a sharp leading-edge, making it readily comparable to a model delta shaped wing of the same leading-edge geometry. Particle image velocimetry provides an understanding of the effect of the tapering swift wing on LEV development and stability, compared with the delta wing model. For the first time a dual LEV is recorded on a swift shaped wing, where it is found across all tested conditions. It is shown that the span-wise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the common swift is able to generate a dual LEV while gliding, potentially delaying vortex breakdown by exploiting other features non explored here, such as wing twist and flexibility. It is further suggested that the vortex system could be used to damp loading fluctuations, reducing energy expenditure, rather than for lift augmentation.


AIAA Journal ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 2113-2118
Author(s):  
Lu Shen ◽  
Chih-yung Wen

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
T. Lee ◽  
L. S. Ko

The ground effect on the aerodynamic loading and leading-edge vortex (LEV) flow generated by a slender delta wing was investigated experimentally. Both the lift and drag forces were found to increase with reducing ground distance (up to 50% of the wing chord). The lift increment was also found to be the greatest at low angles of attack α and decreased rapidly with increasing ground distance and α. The ground effect-caused earlier wing stall was also accompanied by a strengthened LEV with an increased rotational speed and size compared to the baseline wing. The smaller the ground distance, the stronger the LEV and the earlier vortex breakdown became. Meanwhile, the vortex trajectory was also found to be located further inboard and above the delta wing in ground effect compared to its baseline-wing counterpart. Finally, for wing-in-ground effect (WIG) craft with delta-wing planform the most effective in-ground-effect flight should be kept within 10% of the wing chord.


2013 ◽  
Vol 390 ◽  
pp. 12-17
Author(s):  
Hafiz Laiq-Ur Rehman

This manuscript presents the vortex flow structure over non-slender delta wing with leading edge sweep angle, Λ=45°. A comprehensive investigation has been conducted in wind tunnel at Reynolds number ranging from, Re = 247,000 - 445,000. Seven-hole pressure probe measurements for axial vorticity, axial velocity, vortex trajectory and pressure variations are presented at various chordwise stations and angles of incidences. It was demonstrated that weak leading edge vortices are generated very close to the wing surface with strong shear layer which move upward and outboard with apex flap deflection. Reattachment line move towards wing root chord with the increase in angle of attack. Passive apex flap has been used to control the leading edge vortices and to delay the vortex breakdown. It is recognized that vortex breakdown was delayed by 8% by downward apex flap deflection.


2011 ◽  
Vol 128-129 ◽  
pp. 350-353
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Zhi Yong Lu

A study of flow and frequency characteristics of the leading-edge vortices over a delta wing undergoing pitching up-stop motions is presented. The experiments with the dynamic delta wings were conducted in a water channel and a wind tunnel respectively. Among them, the test of the flow visualization was completed in the water channel with the delta wing with pitching up-stop motions. The result shows that in the case of pitching up-stop movement the vortex breakdown position is dependent on the range of incidence at which the wing is subject to pitching up-stop and the reduced frequency k (k=c/2U∞). Analysis of the pressure signal measured in the wind tunnel shows when the delta wing is subject to pitching-up the nondimensional spiral wave frequency at nominal incidence in post-breakdown is higher than that at corresponding static state and the bigger the k is, the higher the nondimensional spiral wave frequency is. The same conclusion is fitted with different sweep delta wing.


Sign in / Sign up

Export Citation Format

Share Document