Electronic Conduction in Oxides

Author(s):  
Nobuo Tsuda ◽  
Keiichiro Nasu ◽  
Akira Yanase ◽  
Kiiti Siratori
2003 ◽  
Vol 107 (45) ◽  
pp. 12378-12382 ◽  
Author(s):  
Bala Sundari T. Kasibhatla ◽  
André P. Labonté ◽  
Ferdows Zahid ◽  
Ronald G. Reifenberger ◽  
Supriyo Datta ◽  
...  

Matter ◽  
2021 ◽  
Vol 4 (10) ◽  
pp. 3248-3268
Author(s):  
Qingsong Tu ◽  
Tan Shi ◽  
Srinath Chakravarthy ◽  
Gerbrand Ceder

1992 ◽  
Vol 66 (5) ◽  
pp. 587-599 ◽  
Author(s):  
K. L. Bhatia ◽  
S. K. Malik ◽  
N. Kishore ◽  
S. P. Singh

2006 ◽  
Vol 103 (23) ◽  
pp. 8601-8606 ◽  
Author(s):  
Y. Jin ◽  
N. Friedman ◽  
M. Sheves ◽  
T. He ◽  
D. Cahen

1999 ◽  
Vol 19 (6-7) ◽  
pp. 803-806 ◽  
Author(s):  
J.J. Sprague ◽  
H.L. Tuller

In the modern theory of electronic conduction the electrons are considered, when the thermal motion of the lattice is neglected, as moving in a periodic potential with the property V ( x + la , y + ma , z + na ) = V ( x, y, z ). The wave equation for an electron in this field is { h 2/8π2 m ∇ 2 + E K - V} ψ K = 0. Block has shown that this equation has solutions of the form ψ K = e i K.R U K (R), where U K has the periodicity of the lattice.


Sign in / Sign up

Export Citation Format

Share Document