Sums of Random Variables, Random Walks and the Central Limit Theorem

Author(s):  
Didier Sornette
2021 ◽  
Vol 36 (2) ◽  
pp. 243-255
Author(s):  
Wei Liu ◽  
Yong Zhang

AbstractIn this paper, we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit theorem and invariance principle to the case where probability measures are no longer additive.


1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


1972 ◽  
Vol 12 (4) ◽  
pp. 183-194
Author(s):  
V. Paulauskas

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: В. Паулаускас. Оценка скорости сходимости в центральной предельной теореме для разнораспределенных слагаемых V. Paulauskas. Konvergavimo greičio įvertinimas centrinėje ribinėje teoremoje nevienodai pasiskirsčiusiems dėmenims


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingzhou Xu ◽  
Kun Cheng

By an inequality of partial sum and uniform convergence of the central limit theorem under sublinear expectations, we establish precise asymptotics in the law of the iterated logarithm for independent and identically distributed random variables under sublinear expectations.


2004 ◽  
Vol 41 (01) ◽  
pp. 83-92 ◽  
Author(s):  
Jean Bérard

The central limit theorem for random walks on ℤ in an i.i.d. space-time random environment was proved by Bernabeiet al.for almost all realization of the environment, under a small randomness assumption. In this paper, we prove that, in the nearest-neighbour case, when the averaged random walk is symmetric, the almost sure central limit theorem holds for anarbitrarylevel of randomness.


Sign in / Sign up

Export Citation Format

Share Document