Structure and Functional Relationships of Satellite RNAs of Cucumber Mosaic Virus

Author(s):  
F. García-Arenal ◽  
P. Palukaitis
Author(s):  
Ivana Stanković ◽  
Ana Vučurović ◽  
Katarina Zečević ◽  
Branka Petrović ◽  
Dušan Nikolić ◽  
...  

2011 ◽  
Vol 92 (8) ◽  
pp. 1930-1938 ◽  
Author(s):  
Mónica Betancourt ◽  
Aurora Fraile ◽  
Fernando García-Arenal

Two groups of Cucumber mosaic virus (CMV) satellite RNAs (satRNAs), necrogenic and non-necrogenic, can be differentiated according to the symptoms they cause in tomato plants, a host in which they also differ in fitness. In most other CMV hosts these CMV-satRNA cause similar symptoms. Here, we analyse whether they differ in traits determining their relative fitness in melon plants, in which the two groups of CMV-satRNAs cause similar symptoms. For this, ten necrogenic and ten non-necrogenic field satRNA genotypes were assayed with Fny-CMV as a helper virus. Neither type of CMV-satRNA modified Fny-CMV symptoms, and both types increased Fny-CMV virulence similarly, as measured by decreases in plant biomass and lifespan. Necrogenic and non-necrogenic satRNAs differed in their ability to multiply in melon tissues; necrogenic satRNAs accumulated to higher levels both in single infection and in competition with non-necrogenic satRNAs. Indeed, multiplication of some non-necrogenic satRNAs was undetectable. Transmission between hosts by aphids was less efficient for necrogenic satRNAs as a consequence of a more severe reduction of CMV accumulation in leaves. The effect of CMV accumulation on aphid transmission was not compensated for by differences in satRNA encapsidation efficiency or transmissibility to CMV progeny. Thus, necrogenic and non-necrogenic satRNAs differ in their relative fitness in melon, and trade-offs are apparent between the within-host and between-host components of satRNA fitness. Hence, CMV-satRNAs could have different evolutionary dynamics in CMV host-plant species in which they do not differ in pathogenicity.


2000 ◽  
Vol 90 (10) ◽  
pp. 1068-1072 ◽  
Author(s):  
Fernando Escriu ◽  
Keith L. Perry ◽  
Fernando García-Arenal

Satellite RNAs (satRNAs) are associated with Cucumber mosaic virus (CMV) in tomato, most often causing severe epidemics of necrotic plants, and not associated with specific host symptoms. Laboratory studies on virus transmission by the aphid vector Aphis gossypii were performed to better understand the dynamics of field populations of CMV. The presence of satRNAs correlated with lower concentrations of virus in infected plants and with a decrease in the efficiency of transmission from satRNA-infected plants. Both the concentration of virus in CMV-infected tomato and the efficiency of transmission varied more extensively with nonnecrogenic satRNAs than with necrogenic satRNAs. A negative effect of satRNAs on virus accumulation can account, in part, for a decrease in the field transmission and recovery of CMV + satRNAs. Aphids behaved differently and probed less readily on plants infected with CMV + necrogenic satRNAs compared with plants containing non-necrogenic satRNAs. Aphid-mediated satRNA-free CMV infections were observed in test plants when aphids were fed on source plants containing CMV + nonnecrogenic satRNA; no comparable satRNA-free test plants occurred when aphids were fed on source plants containing necrogenic satRNAs. These results indicate that factors associated with transmission can be a determinant in the evolution of natural populations of CMV and its satRNA.


Virology ◽  
1992 ◽  
Vol 186 (2) ◽  
pp. 475-480 ◽  
Author(s):  
Enrique Moriones ◽  
Isabel Diaz ◽  
Emilio Rodriguez-Cerezo ◽  
Aurora Fraile ◽  
Fernando Garcia-Arenal

1984 ◽  
Vol 65 (3) ◽  
pp. 539-547 ◽  
Author(s):  
I. Garcia-Luque ◽  
J. M. Kaper ◽  
J. R. Diaz-Ruiz ◽  
M. Rubio-Huertos

Virology ◽  
1984 ◽  
Vol 132 (2) ◽  
pp. 426-435 ◽  
Author(s):  
Peter Palukaitis ◽  
Milton Zaitlin

Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1298-1303 ◽  
Author(s):  
M. S. Montasser ◽  
M. E. Tousignant ◽  
J. M. Kaper

A benign viral satellite RNA, in combination with a mild strain of cucumber mosaic virus (CMV-S), was used as a “vaccine” or “preinoculum” to demonstrate the feasibility of protecting pepper (Capsicum annuum cv. California Wonder) and melon (Cucurbita melo cv. Janus des Canaries) against two severe CMV strains, CMV-D and CMV-16, in the final 2 years of a 4-year pilot field and greenhouse experiment. In the field, healthy pepper and melon seedlings challenged with CMV-D and CMV-16 reduced yields by 33 to 60%; CMV-S caused only limited yield reduction in pepper and had no effect on the yield of melon. Different time intervals between preinoculation of pepper and melon seedlings with CMV-S and challenge inoculation with the severe CMV strains were tested. All plants challenged 3 weeks after vaccination showed nearly complete protection from subsequent infection by severe strains. The yield from preinoculated and challenged pepper plants was 80% that of untreated plants, while the yield from preinoculated and challenged melon plants was increased slightly over the untreated control plants. The use of this technology for biological control of plant viruses is discussed.


Sign in / Sign up

Export Citation Format

Share Document