relative fitness
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 124)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2021 ◽  
Author(s):  
Michal Hledik ◽  
Nick H Barton ◽  
Gasper Tkacik

Selection accumulates information in the genome - it guides stochastically evolving populations towards states (genotype frequencies) that would be unlikely under neutrality. This can be quantified as the Kullback-Leibler (KL) divergence between the actual distribution of genotype frequencies and the corresponding neutral distribution. First, we show that this population-level information sets an upper bound on the information at the level of genotype and phenotype, limiting how precisely they can be specified by selection. Next, we study how the accumulation and maintenance of information is limited by the cost of selection, measured as the genetic load or the relative fitness variance, both of which we connect to the control-theoretic KL cost of control. The information accumulation rate is upper bounded by the population size times the cost of selection. This bound is very general, and applies across models (Wright-Fisher, Moran, diffusion) and to arbitrary forms of selection, mutation and recombination. Finally, the cost of maintaining information depends on how it is encoded: specifying a single allele out of two is expensive, but one bit encoded among many weakly specified loci (as in a polygenic trait) is cheap.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Viola Halder ◽  
Brianna McDonnell ◽  
Rebecca Shapiro

Candida albicans is an opportunistic fungal pathogen found in the oral mucosa, the gut, the vaginal mucosa, and humans' skin. While C. albicans can cause superficial infections, severe invasive infections can occur in immunocompromised individuals. Understanding the survival mechanisms and pathogenesis of C. albicans is critical for novel antifungal drug discovery. Determining the relationships between different genes can create a genetic interaction map, which can identify complementary gene sets, central to C. albicans survival, as potential drug targets in combination therapy. A genetic approach using the CRISPR-Cas9-based genome editing platform will focus on genetic interaction analysis of C. albicans stress response genes. The ultimate goal is to create a stress response gene deletion library to study its pathogen survival role. This library of single and double stress response gene mutants will be screened under diverse growth conditions to assess their relative fitness. Genetic interaction analysis will help map out epistatic interactions between fungal genes involved in growth, survival, and pathogenesis and uncover putative targets for combination antifungal therapy based on negative or synthetic lethal genetic interactions.


2021 ◽  
Author(s):  
Christie Le Coeur ◽  
Nigel Gilles Yoccoz ◽  
Roberto Salguero-Gomez ◽  
Yngvild Vindenes

Demographic buffering and lability have both been identified as important adaptive strategies to optimise long-term fitness in variable environments. These strategies are not mutually exclusive, however we lack efficient methods to measure their relative importance. Here, we define a new index to measure the total lability for a given life history, and use stochastic simulations to disentangle relative fitness effects of buffering and lability. The simulations use 81 animal matrix population models, and different scenarios to explore how the strategies vary across life histories. The highest potential for adaptive demographic lability was found for short- to intermediately long-lived species, while demographic buffering was the main response in slow-living species. This study suggests that faster-living species are more responsive to environmental variability, both for positive or negative effects. Our methods and results provide a more comprehensive view of adaptations to variability, of high relevance to predict species responses to climate change.


2021 ◽  
Author(s):  
Chia-Hung Yang ◽  
Samuel V. Scarpino

AbstractOver 100 years, Fitness landscapes have been a powerful metaphor for understanding the evolution of biological systems. These landscapes describe how genotypes are connected to each other and are related according to relative fitness. Despite the high dimensionality of such real-world landscapes, empirical studies are often limited in their ability to quantify the fitness of different genotypes beyond point mutations, while theoretical works attempt statistical/mechanistic models to reason the overall landscape structure. However, most classical fitness landscape models overlook an instinctive constraint that genotypes leading to the same phenotype almost certainly share the same fitness value, since the information of genotype-phenotype mapping is rarely incorporated. Here, we investigate fitness landscape models through the lens of Gene Regulatory Networks (GRNs), where the regulatory products are computed from multiple genes and collectively treated as the phenotypes. With the assumption that regulatory mediators/products exhibit binary states, we prove topographical features of GRN fitness landscape models such as accessibility and connectivity insensitive to the choice of the fitness function. Furthermore, using graph theory, we deduce a mesoscopic structure underlying GRN fitness landscape models that retains necessary information for evolutionary dynamics with minimal complexity. We also propose an algorithm to construct such a mesoscopic backbone which is more efficient than the brute-force approach. Combined, this work provides mathematical implications for fitness landscape models with high-dimensional genotype-phenotype mapping, yielding the potential to elucidate empirical landscapes and their resulting evolutionary processes in a manner complementary to existing computational studies.


2021 ◽  
Author(s):  
Sydney Kreutzmann ◽  
Elizabeth Pompa ◽  
Nhan Ngyuen ◽  
Liya Tilahun ◽  
Matthew Rutter ◽  
...  

Abstract Understanding the mechanisms by which mutations affect fitness and the distribution of mutational effects are central goals in evolutionary biology. Mutation accumulation (MA) lines have long been an important tool for understanding the effect of new mutations on fitness, phenotypic variation, and mutational parameters. However, there is a clear gap in predicting the effect of specific new mutations to their effects on fitness. Here, we complete gene ontology analysis and metabolomics experiments on Arabidopsis thaliana MA lines to determine how spontaneous mutations directly affect global metabolic output in lines that have measured fitness consequences. For these analyses, we compared three lines with relative fitness consistently higher than the unmutated progenitor and three lines with lower relative fitness as measured in four different field trials. In a gene ontology analysis, we find that the high fitness lines were significantly enriched in mutations in or near genes with transcription regulator activity. We also find that although they do not have an average difference in the number of mutations, low fitness lines have significantly more metabolic subpathways disrupted than high fitness lines. Taken together, these results suggest that the effect of a new mutation on fitness depends less on the specific metabolic pathways disrupted and more on the pleiotropic effects of those mutations, and that organisms can explore a considerable amount of physiological space with only a few mutations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eija K. Laakkonen ◽  
Jari E. Karppinen ◽  
Satu Lehti ◽  
Earric Lee ◽  
Emilia Pesonen ◽  
...  

ObjectiveLoss of sex hormones has been suggested to underlie menopause-associated increment in cardiovascular risk. We investigated associations of sex hormones with arterial stiffness in 19–58-years-old women. We also studied associations of specific hormonal stages, including natural menstrual cycle, cycle with combined oral contraceptives (COC) and menopausal status with or without hormone therapy (HT), with arterial stiffness.MethodsThis study includes repeated measurements of 65 healthy women representing reproductive (n=16 natural, n=10 COC-users) and menopause (n=5 perimenopausal, n=26 postmenopausal, n=8 HT-users) stages. Arterial stiffness outcomes were aortic pulse wave velocity (PWVao) and augmentation index (AIx%) assessed using Arteriograph-device. Generalized estimating equation models were constructed to investigate associations of each hormone (wide age-range models) or hormonal stage (age-group focused models) with arterial stiffness. PWVao models with cross-sectional approach, were adjusted for age, relative fitness, fat mass and mean arterial pressure, while models with longitudinal approach were adjusted for mean arterial pressure. AIx% models used the same approach for adjustments and were also adjusted for heart rate.ResultsNegative and positive associations with arterial stiffness variables were observed for estradiol and follicle-stimulating hormone, respectively, until adjustment for confounding effect of age. In naturally menstruating women, AIx% was higher at ovulation (B=3.63, p<0.001) compared to the early follicular phase. In COC-users, PWVao was lower during active (B=-0.33 - -0.57, p<0.05) than inactive pills. In menopausal women, HT-users had higher PWVao (B=1.43, p=0.03) than postmenopausal non-HT-users.ConclusionsWhen using wide age-range assessments covering reproductive to menopausal lifespan it is difficult to differentiate age- and hormone-mediated associations, because age-mediated influence on arterial stiffness seemed to overrule potential hormone-mediated influences. However, hormonal status associated differentially with arterial stiffness in age-group focused analyses. Thus, the role of sex hormones cannot be excluded. Further research is warranted to resolve potential hormone-mediated mechanisms affecting arterial elasticity.


2021 ◽  
Vol 100 (11) ◽  
pp. 1328-1332
Author(s):  
Denis D. Karimov ◽  
Eldar R. Kudoyarov ◽  
Guzel F. Mukhammadiyeva ◽  
Munira M. Ziatdinova ◽  
Samat S. Baigildin ◽  
...  

Aging is an individual, complex biological process, modulated by internal and external factors, characterized by a progressive loss of biological / physiological integrity, which leads to body dysfunction, increases vulnerability and death. Influence of activity type on aging rate has been convincingly shown in many studies, which makes it possible assess differences in aging rate of workers, exposed various occupational factors, conditions, work nature and intensity in certain professional and seniority groups, adequately reflects health state and can predict effectiveness of human labor activity. As integral indicator, it can help identify individuals at risk of age-related disorders, serving as a measure of relative fitness and predicting later life disability and mortality, regardless of chronological age. The article provides an overview of the main measuring ageing rate methods based on biomarkers, such as functional (“Kiev model”, WAI) and molecular genetic biomarkers (determination of telomere length, β-galactosidase enzyme activity) of human ageing, applicable in occupational medicine. The review discusses the main requirements for biomarker sets compilation, methods applicability and reliability, mathematical approaches to biological age calculating, and some workers biological age calculating problems. This allows assuming the great potential for using biological age to assess the impact of working conditions and work nature on workers’ ageing rate to prevent disability and improve quality of life.


2021 ◽  
Author(s):  
Rubens Hideo Kanno ◽  
Aline Guidolin ◽  
Fernando Padovez ◽  
Juliana Rodrigues ◽  
Celso Omoto

Insecticide resistance is usually associated with fitness costs. The magnitude of fitness costs is affected by environmental and ecological factors. Here, we explored how host plants could affect fitness costs associated with insecticide resistance. Initially, spinetoram-resistant (RR) and susceptible (SS) strains of Spodoptera frugiperda were selected using F2 screen from a population collected in Sao Desiderio, Bahia State, Brazil in 2018. Besides de RR and SS strains, fitness costs were also assessed for a heterozygous strain (RS). Life-history traits were evaluated to estimate population growth parameters of neonate larvae of each strain fed on corn, soybean and cotton plants. Compared to the SS strain, the relative fitness of the RR strain, based on intrinsic rate of population increase, was 1.06, 0.84 and 0.67 on plants of corn, soybean and cotton respectively. The relative fitness of the RS strain was similar to the SS strain regardless the host plant, suggesting a recessive fitness cost. No differences were found between the strains fed on corn plants. The larval development time was greater for RR strain fed on soybean and cotton plants compared to RS and SS strain. Low survival rate and fecundity of the RR strain were found when larvae fed on plants of soybean and cotton. The results of this study demonstrated that fitness costs of spinetoram resistance in S. frugiperda depend strongly on the host plants that S. frugiperda larvae fed on. Such information can be used to design resistance management strategies considering the host plants of the agricultural landscape. Keywords: fall armyworm; spinosyns; insect resistance management; relative fitness.


2021 ◽  
Author(s):  
Christopher J. Nunn ◽  
Sidhartha Goyal

Eukaryotic cells contain numerous copies of mitochondrial DNA (mtDNA), allowing for the coexistence of mutant and wild-type mtDNA in individual cells. The fate of mutant mtDNA depends on their relative replicative fitness within cells and the resulting cellular fitness within populations of cells. Yet the dynamics of the generation of mutant mtDNA and features that inform their fitness remain unaddressed. Here we utilize long read single-molecule sequencing to track mtDNA mutational trajectories in Saccharomyces cerevisiae. We show a previously unseen pattern that constrains subsequent excision events in mtDNA fragmentation. We also provide evidence for the generation of rare and contentious non-periodic mtDNA structures that lead to persistent diversity within individual cells. Finally, we show that measurements of relative fitness of mtDNA fit a phenomenological model that highlights important biophysical parameters governing mtDNA fitness. Altogether, our study provides techniques and insights into the dynamics of large structural changes in genomes that may be applicable in more complex organisms.


Sign in / Sign up

Export Citation Format

Share Document