Agent-Based Traffic Simulation Using SUMO and JADE: An Integrated Platform for Artificial Transportation Systems

Author(s):  
Guilherme Soares ◽  
Zafeiris Kokkinogenis ◽  
José Luiz Macedo ◽  
Rosaldo J. F. Rossetti
2012 ◽  
Vol 4 (4) ◽  
pp. 38-60 ◽  
Author(s):  
Junia Valente ◽  
Frederico Araujo ◽  
Rym Z. Wenkstern

The advances in Intelligent Transportation Systems (ITS) call for a new generation of traffic simulation models that support connectivity and collaboration among simulated vehicles and traffic infrastructure. In this paper we introduce MATISSE, a complex, large scale agent-based framework for the modeling and simulation of ITS and discuss how Alloy, a modeling language based on set theory and first order logic, was used to specify, verify, and analyze MATISSE’s traffic models.


2022 ◽  
Vol 51 ◽  
pp. 101476
Author(s):  
Semiha Ergan ◽  
Zhengbo Zou ◽  
Suzana Duran Bernardes ◽  
Fan Zuo ◽  
Kaan Ozbay

Author(s):  
Lokukaluge P. Perera

A general framework to support the navigation side of autonomous ships is discussed in this study. That consists of various maritime technologies to achieve the required level of ocean autonomy. Decision-making processes in autonomous vessels will play an important role under such ocean autonomy, therefore the same technologies should consist of adequate system intelligence. Each onboard application in autonomous vessels may require localized decision-making modules, therefore that will introduce a distributed intelligence type strategy. Hence, future ships will be agent-based systems with distributed intelligence throughout vessels. The main core of this agent should consist of deep learning type technology that has presented promising results in other transportation systems, i.e. self-driving cars. Deep learning can capture helmsman behavior, therefore that type system intelligence can be used to navigate autonomous vessels. Furthermore, an additional decision support layer should also be developed to facilitate deep learning type technology including situation awareness and collision avoidance. Ship collision avoidance is regulated by the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) under open sea areas. Hence, a general overview of the COLREGs and its implementation challenges, i.e. regulatory failures and violations, under autonomous ships are also discussed with the possible solutions as the main contribution of this study. Furthermore, additional considerations, i.e. performance standards with the applicable limits of liability, terms, expectations and conditions, towards evaluating ship behavior as an agent-based system on collision avoidance situations are also illustrated in this study.


Author(s):  
Angelika C. Batosalem ◽  
Janelle Marie B. Gaba ◽  
Jan Bertel O. Ngo ◽  
Jonal Ray G. Ticug ◽  
Courtney Anne M. Ngo

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
M. Benalla ◽  
B. Achchab ◽  
H. Hrimech

Providing accurate real-time traffic information is an inherent problem for intelligent transportation systems (ITS). In order to improve the knowledge base of advanced driver assistance systems (ADAS), ITS are strongly concerned with data fusion techniques of all kinds of sensors deployed over the traffic network. Driver assistance is devoid of a comprehensive evidential reasoning system on contextual information, more specifically when a combination involves inside and outside sensory information of the driving environment. In this paper, we propose a novel agent-based evidential reasoning system using contextual information. Based on a series of information handling techniques, specifically, the belief functions theory and heuristic inference operations to achieve a consensus about daily driving activity in automatically inferring. That is quite different from other existing proposals, as it deals jointly with the driving behavior and the driving environment conditions. A case study including various scenarios of experiments is introduced to estimate behavioral information based on synthetic data for prediction, prescription, and policy analysis. Our experiments show promising, thought-provoking results encouraging further research.


1998 ◽  
Vol 1644 (1) ◽  
pp. 116-123 ◽  
Author(s):  
Natacha Thomas ◽  
Bader Hafeez

Intelligent transportation systems have created new traffic monitoring approaches and fueled new interests in automated incident detection systems. One new monitoring approach utilizes actual travel times experienced by vehicles, called probes, equipped to transmit this information in real time to a control center. The database needed to design and calibrate arterial incident detection systems based on probe travel times is nonexistent. A microscopic traffic simulation package, Integrated Traffic Simulation, was selected and enhanced to generate vehicle travel times for the incident and incident-free conditions on an arterial. We evaluated the enhanced model. Significant variations in probe travel times were observed in the event of incidents. Average travel time, contrary to average occupancy, may increase, decrease, or remain constant on arterial streets downstream of an incident.


Sign in / Sign up

Export Citation Format

Share Document