scholarly journals Improved Approximation for Fréchet Distance on c-packed Curves Matching Conditional Lower Bounds

Author(s):  
Karl Bringmann ◽  
Marvin Künnemann
2017 ◽  
Vol 27 (01n02) ◽  
pp. 85-119 ◽  
Author(s):  
Karl Bringmann ◽  
Marvin Künnemann

The Fréchet distance is a well studied and very popular measure of similarity of two curves. The best known algorithms have quadratic time complexity, which has recently been shown to be optimal assuming the Strong Exponential Time Hypothesis (SETH) [Bringmann, FOCS'14]. To overcome the worst-case quadratic time barrier, restricted classes of curves have been studied that attempt to capture realistic input curves. The most popular such class are [Formula: see text]-packed curves, for which the Fréchet distance has a [Formula: see text]-approximation in time [Formula: see text] [Driemel et al., DCG'12]. In dimension [Formula: see text] this cannot be improved to [Formula: see text] for any [Formula: see text] unless SETH fails [Bringmann, FOCS'14]. In this paper, exploiting properties that prevent stronger lower bounds, we present an improved algorithm with time complexity [Formula: see text]. This improves upon the algorithm by Driemel et al. for any [Formula: see text]. Moreover, our algorithm's dependence on [Formula: see text], [Formula: see text] and [Formula: see text] is optimal in high dimensions apart from lower order factors, unless SETH fails. Our main new ingredients are as follows: For filling the classical free-space diagram we project short subcurves onto a line, which yields one-dimensional separated curves with roughly the same pairwise distances between vertices. Then we tackle this special case in near-linear time by carefully extending a greedy algorithm for the Fréchet distance of one-dimensional separated curves.


Author(s):  
Sergey Bereg ◽  
Minghui Jiang ◽  
Wencheng Wang ◽  
Boting Yang ◽  
Binhai Zhu

Author(s):  
Boris Aronov ◽  
Sariel Har-Peled ◽  
Christian Knauer ◽  
Yusu Wang ◽  
Carola Wenk

Sign in / Sign up

Export Citation Format

Share Document