Nuclear Medicine Imaging Modalities: Bone Scintigraphy, PET-CT, SPECT-CT

Author(s):  
Andor W. J. M. Glaudemans ◽  
Alberto Signore
2011 ◽  
Vol 23 (9) ◽  
pp. 632-645 ◽  
Author(s):  
V. Vassiliou ◽  
D. Andreopoulos ◽  
S. Frangos ◽  
N. Tselis ◽  
E. Giannopoulou ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Beena Ullala Mata B N ◽  
Anup Kumar Pal ◽  
Hrithik Sivadasan ◽  
Himanshu Mishra

Nuclear Medicine is a medical specialty that allows modern diagnostics and treatments using radiopharmaceuticals original radiotracers (drugs linked to a radioactive isotope). The radiopharmaceuticals are considered a special group of drugs and thus their preparation and use are regulated by a set of policies that have been adopted by individual member countries. The radiopharmaceuticals used in diagnostic examinations are administered in very small doses. So, in general, they have no pharmacological action, side effects or serious adverse reactions. The most serious issue with their use is the potential for diagnostic mistakes due to changes in their biodistribution. The appearance and development of new radiopharmaceuticals in both the diagnostic and therapeutic domains, as well as the impact of new multimodality imaging techniques, are all having a significant impact on nuclear medicine (SPECT-CT, PET-CT, PET-MRI, etc.). It is crucial to understand the techniques limitations, radiopharmaceutical distribution and potential physiological changes, radiological contrast contraindications and bad responses, and the possibility of both interfering. The process of generating radiopharmaceuticals is introduced and relevant interactions of radiation with matter are discussed. Diagnostic nuclear medicine instrumentation is explained, and future trends in nuclear medicine imaging technology are forecasted.


Author(s):  
Aleksandra Augustynowicz ◽  
Neha Kwatra ◽  
Laura Drubach ◽  
Christopher Weldon ◽  
Katherine Janeway ◽  
...  

Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors in childhood. Cancer predisposition syndromes (CPS) are increasingly recognized as the underlying cause for a number of pediatric malignancies and up to 40% of PPGL are currently thought to be associated with a hereditary predisposition1,2. With the increasingly widespread availability of functional molecular imaging techniques, nuclear medicine imaging modalities such as 18F-FDG-PET/CT, 123I-MIBG SPECT/CT, and 68Ga-DOTATATE PET/CT now play an essential role in the staging, response assessment and determination of suitability for targeted radiotherapy in patients with PPGL. Each of these imaging modalities targets a different cellular characteristic, such as glucose metabolism (FDG), norepinephrine transporter expression (MIBG), or somatostatin receptor expression (DOTATATE), and therefore can be complementary to anatomic imaging and to each other. Given the recent FDA approval3 and increasing use of 68Ga-DOTATATE for imaging in children4, the purpose of this article is to use a case-based approach to highlight both the advantages and limitations of DOTATATE imaging as it compares to current radiologic imaging techniques in the staging and response assessment of pediatric PPGL, and to offer a decision algorithm for the use of functional imaging that can be applied to PPGL, as well as other neuroendocrine malignancies.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Beena Ullala Mata B N ◽  
Anup Kumar Pal ◽  
Hrithik Sivadasan ◽  
Himanshu Mishra

Nuclear Medicine is a medical specialty that allows modern diagnostics and treatments using radiopharmaceuticals original radiotracers (drugs linked to a radioactive isotope). The radiopharmaceuticals are considered a special group of drugs and thus their preparation and use are regulated by a set of policies that have been adopted by individual member countries. The radiopharmaceuticals used in diagnostic examinations are administered in very small doses. So, in general, they have no pharmacological action, side effects or serious adverse reactions. The most serious issue with their use is the potential for diagnostic mistakes due to changes in their biodistribution. The appearance and development of new radiopharmaceuticals in both the diagnostic and therapeutic domains, as well as the impact of new multimodality imaging techniques, are all having a significant impact on nuclear medicine (SPECT-CT, PET-CT, PET-MRI, etc.). It is crucial to understand the techniques limitations, radiopharmaceutical distribution and potential physiological changes, radiological contrast contraindications and bad responses, and the possibility of both interfering. The process of generating radiopharmaceuticals is introduced and relevant interactions of radiation with matter are discussed. Diagnostic nuclear medicine instrumentation is explained, and future trends in nuclear medicine imaging technology are forecasted.


Author(s):  
Barbara Juarez Amorim ◽  
Benedikt Michael Schaarschmidt ◽  
Johannes Grueneisen ◽  
Shahein Tajmir ◽  
Lale Umutlu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document