early detection
Recently Published Documents


TOTAL DOCUMENTS

18483
(FIVE YEARS 5513)

H-INDEX

151
(FIVE YEARS 24)

2022 ◽  
Vol 22 (3) ◽  
pp. 1-17
Author(s):  
Chaonan Shen ◽  
Kai Zhang ◽  
Jinshan Tang

COVID-19 has been spread around the world and has caused a huge number of deaths. Early detection of this disease is the most efficient way to prevent its rapid spread. Due to the development of internet technology and edge intelligence, developing an early detection system for COVID-19 in the medical environment of the Internet of Things (IoT) can effectively alleviate the spread of the disease. In this paper, a detection algorithm is developed, which can detect COVID-19 effectively by utilizing the features from Chest X-ray (CXR) images. First, a pre-trained model (ResNet18) is adopted for feature extraction. Then, a discrete social learning particle swarm optimization algorithm (DSLPSO) is proposed for feature selection. By filtering redundant and irrelevant features, the dimensionality of the feature vector is reduced. Finally, the images are classified by a Support Vector Machine (SVM) for COVID-19 detection. Experimental results show that the proposed algorithm can achieve competitive performance with fewer features, which is suitable for edge computing devices with lower computation power.


Automatic environmental monitoring is a field that encompasses several scientific practices for the assessment of risks that may negatively impact a given environment, such as the forest. A forest is a natural environment that hosts various forms of plant and animal life, so preserving the forest is a top priority. To this end, the authors of this paper will focus on the development of an intelligent system for the early detection of forest fires, based on an IoT solution. This latter will thus facilitate the exploitation of the functionalities offered by the Cloud and mobile applications. Detecting and predicting forest fires with accuracy is a difficult task that requires machine learning and an in-depth analysis of environmental conditions. This leads the authors to adopt the forward neural network algorithm by highlighting its contribution through real experiments, performed on the prototype developed in this paper.


2022 ◽  
Vol 44 (2) ◽  
pp. 159-164
Author(s):  
Salwa M.A. Ibrahim ◽  
Hala M.A. Sabah ◽  
Ahmed I. Eldesoky ◽  
Marwa Y. Soltan ◽  
Hebatallah A. Elshamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document