Vertex-Transitive Graphs That Are Not Cayley Graphs

1990 ◽  
pp. 243-256 ◽  
Author(s):  
Mark E. Watkins
2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.


10.37236/3915 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Jin-Xin Zhou ◽  
Yan-Quan Feng

A bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two orbits of equal size. In this paper, we give a characterization of cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular $p$-group, where $p>5$ is an odd prime. As an application, a classification of cubic non-Cayley vertex-transitive graphs of order $2p^3$ is given for each prime $p$.


10.37236/5651 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jing Chen ◽  
Binzhou Xia

The isomorphism problem of Cayley graphs has been well studied in the literature, such as characterizations of CI (DCI)-graphs and CI (DCI)-groups. In this paper, we generalize these to vertex-transitive graphs and establish parallel results. Some interesting vertex-transitive graphs are given, including a first example of connected symmetric non-Cayley non-GI-graph. Also, we initiate the study for GI and DGI-groups, defined analogously to the concept of CI and DCI-groups.


2017 ◽  
Vol 67 (1) ◽  
Author(s):  
Shoufeng Wang

AbstractIt is well known that Cayley graphs of groups are automatically vertex-transitive. A pioneer result of Kelarev and Praeger implies that Cayley graphs of semigroups can be regarded as a source of possibly new vertex-transitive graphs. In this note, we consider the following problem: Is every vertex-transitive Cayley graph of a semigroup isomorphic to a Cayley graph of a group? With the help of the results of Kelarev and Praeger, we show that the vertex-transitive, connected and undirected finite Cayley graphs of semigroups are isomorphic to Cayley graphs of groups, and all finite vertex-transitive Cayley graphs of inverse semigroups are isomorphic to Cayley graphs of groups. Furthermore, some related problems are proposed.


10.37236/1347 ◽  
1997 ◽  
Vol 5 (1) ◽  
Author(s):  
Ljiljana Branković ◽  
Mirka Miller ◽  
Ján Plesník ◽  
Joe Ryan ◽  
Jozef Širáň

Voltage graphs are a powerful tool for constructing large graphs (called lifts) with prescribed properties as covering spaces of small base graphs. This makes them suitable for application to the degree/diameter problem, which is to determine the largest order of a graph with given degree and diameter. Many currently known largest graphs of degree $\le 15$ and diameter $\le 10$ have been found by computer search among Cayley graphs of semidirect products of cyclic groups. We show that all of them can in fact be described as lifts of smaller Cayley graphs of cyclic groups, with voltages in (other) cyclic groups. This opens up a new possible direction in the search for large vertex-transitive graphs of given degree and diameter.


Author(s):  
Brendan D. McKay ◽  
Cheryl E. Praeger

AbstractThe Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.


10.37236/3144 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
David E. Roberson

A core of a graph X is a vertex minimal subgraph to which X admits a homomorphism. Hahn and Tardif have shown that for vertex transitive graphs, the size of the core must divide the size of the graph. This motivates the following question: when can the vertex set of a vertex transitive graph be partitioned into sets each of which induce a copy of its core? We show that normal Cayley graphs and vertex transitive graphs with cores half their size always admit such partitions. We also show that the vertex sets of vertex transitive graphs with cores less than half their size do not, in general, have such partitions.


Sign in / Sign up

Export Citation Format

Share Document