Elastic Waves in Periodic Composite Materials

1996 ◽  
pp. 143-164 ◽  
Author(s):  
M. Kafesaki ◽  
E. N. Economou ◽  
M. M. Sigalas
1983 ◽  
Vol 19 (1) ◽  
pp. 1-13 ◽  
Author(s):  
S. Sgubini ◽  
F. Graziani ◽  
A. Agneni

1999 ◽  
Vol 66 (4) ◽  
pp. 858-866
Author(s):  
P. Bisegna ◽  
R. Luciano

In this paper the four classical Hashin-Shtrikman variational principles, applied to the homogenization problem for periodic composites with a nonlinear hyperelastic constitutive behavior, are analyzed. It is proved that two of them are indeed minimum principles while the other two are saddle point principles. As a consequence, every approximation of the former ones provide bounds on the effective properties of composite bodies, while approximations of the latter ones may supply inconsistent bounds, as it is shown by two numerical examples. Nevertheless, the approximations of the saddle point principles are expected to provide better estimates than the approximations of the minimum principles.


Author(s):  
Igor V Andrianov ◽  
Vladimir I Bolshakov ◽  
Vladyslav V Danishevs'kyy ◽  
Dieter Weichert

We present an application of the higher order asymptotic homogenization method (AHM) to the study of wave dispersion in periodic composite materials. When the wavelength of a travelling signal becomes comparable with the size of heterogeneities, successive reflections and refractions of the waves at the component interfaces lead to the formation of a complicated sequence of the pass and stop frequency bands. Application of the AHM provides a long-wave approximation valid in the low-frequency range. Solution for the high frequencies is obtained on the basis of the Floquet–Bloch approach by expanding spatially varying properties of a composite medium in a Fourier series and representing unknown displacement fields by infinite plane-wave expansions. Steady-state elastic longitudinal waves in a composite rod (one-dimensional problem allowing the exact analytical solution) and transverse anti-plane shear waves in a fibre-reinforced composite with a square lattice of cylindrical inclusions (two-dimensional problem) are considered. The dispersion curves are obtained, the pass and stop frequency bands are identified.


Sign in / Sign up

Export Citation Format

Share Document