linear behaviour
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 78)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Rachel Wai-Ying Wu ◽  
Zheng Wu ◽  
Daniela I. V. Domeisen

Abstract. Extreme stratospheric events such as sudden stratospheric warming and strong vortex events associated with an anomalously weak or strong polar vortex can have downward impacts on surface weather that can last for several weeks to months. Hence, successful predictions of these stratospheric events would be beneficial for extended range weather prediction. However, the predictability limit of extreme stratospheric events is most often limited to around 2 weeks or less. The predictability also strongly differs between events, and between event types. The reasons for the observed differences in the predictability, however, are not resolved. To better understand the predictability differences between events, we expand the definitions of extreme stratospheric events to wind deceleration and acceleration events, and conduct a systematic comparison of predictability between event types in the European Centre for Medium-Range Weather Forecasts (ECMWF) prediction system for the sub-seasonal predictions. We find that wind deceleration and acceleration events follow the same predictability behaviour, that is, events of stronger magnitude are less predictable in a close to linear relationship, to the same extent for both types of events. There are however deviations from this linear behaviour for very extreme events. The difficulties of the prediction system in predicting extremely strong anomalies can be traced to a poor predictability of extreme wave activity pulses in the lower stratosphere, which impacts the prediction of deceleration events, and interestingly, also acceleration events. Improvements in the understanding of the wave amplification that is associated with extremely strong wave activity pulses and accurately representing these processes in the model is expected to enhance the predictability of stratospheric extreme events and, by extension, their impacts on surface weather and climate.


Author(s):  
M Angeles Perez-Garcia ◽  
Aurora Perez Martinez ◽  
Elisabeth Rodriguez Querts

Abstract Recent simulations show that very large electric and magnetic fields near the kilo Tesla strength will likely be generated by ultra-intense lasers at existing facilities over distances of hundreds of microns in underdense plasmas. Stronger ones are even expected in the future although some technical dificulties must be overcome. In addition, it has been shown that vacuum exhibits a peculiar non-linear behaviour in presence of high magnetic and electric field strengths. In this work we are interested in the analysis of thermodynamical contributions of vacuum to the energy density and pressure when radiation interacts with it in the presence of an external magnetic field. Using the Euler-Heisenberg formalism in the regime of weak fields i.e. smaller than critical Quantum Electrodynamics field strength values, we evaluate these magnitudes and analyze the highly anisotropic behaviour we find. Our work has implications for photon-photon scattering with lasers and astrophysically magnetized underdense systems far outside their surface where matter effects are increasingly negligible.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 162
Author(s):  
Gianluca Caposciutti ◽  
Bernardo Tellini ◽  
Alfredo Cigada ◽  
Stefano Manzoni

New low-cost measuring devices require that the box housing and electronics have the cost aligned with the sensing system. Nowadays, metallic clips and/or glue are commonly used to fix the electronics to the box, thus providing the same motion of the structure to the sensing element. However, these systems may undergo daily or seasonal thermal cycles, and the combined effect of thermal and mechanical stress can determine significant uncertainties in the measurand evaluation. To study these effects, we prepared some parallel plates capacitors by using glue as a dielectric material. We used different types of fixing and sample assembly to separate the effects of glue softening on the capacitor active area and plates distance. Therefore, we assessed the sample modification by measuring the capacitance variation during controlled temperature cycles. We explored possible non-linear behaviour of the capacitance vs. temperature, and possible effects of thermal cycles on the glue geometry. Further work is still needed to properly assess the nature of this phenomenon and to study the effect of mechanical stress on the sample’s capacitance.


2021 ◽  
Author(s):  
◽  
Felicia Ullstad

<p>In this thesis, we investigate the rare earth nitrides, a family of materials containing many intrinsic ferromagnetic semiconductors, with a particular focus on GdN and SmN.We investigate the rare earth nitride formation reaction, explore some properties of GdN and SmN, and finally manufacture and measure magnetic tunnel junctions which incorporate rare earth nitrides. The investigations of the reaction and properties of the materials are used to improve and understand the magnetic tunnel junctions. All samples and devices are grown at room temperature, giving polycrystalline rare earth nitride films.  We show that a rare earth surface can catalytically break theN2 molecule at ambient temperature and low pressures. We follow the nitrogen reacting with the rare earth to form a rare earth nitride in real time via conductance measurements. By comparing the N2 cracking, reaction, and diffusion at both a RE and a REN surface we propose a pressure range in which the nitrogen content in SmN can be manipulated and conclude that the nitrogen in the top monolayers in a SmN film is mobile.  In the investigation of GdN and SmN, we find that the conductivity of SmN follows the same behaviour as GdN when changing the N2 pressure during deposition. We follow the conductance change in SmN during deposition and propose a minimum thickness for room temperature deposited SmN films for consistent conductivity measurements. We report structural and magnetic changes in GdN which has been exposed to N-ions. We also present data on materials making ohmic contact to both GdN and SmN.  Finally, we report the manufacturing and investigation of magnetic tunnel junctions using GdN and SmN electrodes with a GaN tunnel barrier. A new pattern design produces 20 devices, in a single deposition, which show consistent behaviour and expands on previous work on this topic. The main focus of the investigation is the J-V characteristics of the magnetic tunnel junctions which shows clear non-linear behaviour arising from tunnelling through the GaN. A Simmons fit to the J-V characteristics yields a barrier height of 0:8 eV and barrier thicknesses close to experimentally determined thicknesses. The J-V characteristics are investigated with changing temperature and changing applied magnetic field to investigate the effect of the ferromagnetism of the GdN and SmN electrodes. The tunnel magnetoresistance (TMR) of the devices show two contributions, a low-temperature TMR contribution and a 50K TMR contribution, and the maximum TMR for all devices are between 100% to 600%. The devices can withstand current densities up to 4000A/cm² and voltages up to 5V which is promising for a wide range of future applications.</p>


2021 ◽  
Author(s):  
◽  
Felicia Ullstad

<p>In this thesis, we investigate the rare earth nitrides, a family of materials containing many intrinsic ferromagnetic semiconductors, with a particular focus on GdN and SmN.We investigate the rare earth nitride formation reaction, explore some properties of GdN and SmN, and finally manufacture and measure magnetic tunnel junctions which incorporate rare earth nitrides. The investigations of the reaction and properties of the materials are used to improve and understand the magnetic tunnel junctions. All samples and devices are grown at room temperature, giving polycrystalline rare earth nitride films.  We show that a rare earth surface can catalytically break theN2 molecule at ambient temperature and low pressures. We follow the nitrogen reacting with the rare earth to form a rare earth nitride in real time via conductance measurements. By comparing the N2 cracking, reaction, and diffusion at both a RE and a REN surface we propose a pressure range in which the nitrogen content in SmN can be manipulated and conclude that the nitrogen in the top monolayers in a SmN film is mobile.  In the investigation of GdN and SmN, we find that the conductivity of SmN follows the same behaviour as GdN when changing the N2 pressure during deposition. We follow the conductance change in SmN during deposition and propose a minimum thickness for room temperature deposited SmN films for consistent conductivity measurements. We report structural and magnetic changes in GdN which has been exposed to N-ions. We also present data on materials making ohmic contact to both GdN and SmN.  Finally, we report the manufacturing and investigation of magnetic tunnel junctions using GdN and SmN electrodes with a GaN tunnel barrier. A new pattern design produces 20 devices, in a single deposition, which show consistent behaviour and expands on previous work on this topic. The main focus of the investigation is the J-V characteristics of the magnetic tunnel junctions which shows clear non-linear behaviour arising from tunnelling through the GaN. A Simmons fit to the J-V characteristics yields a barrier height of 0:8 eV and barrier thicknesses close to experimentally determined thicknesses. The J-V characteristics are investigated with changing temperature and changing applied magnetic field to investigate the effect of the ferromagnetism of the GdN and SmN electrodes. The tunnel magnetoresistance (TMR) of the devices show two contributions, a low-temperature TMR contribution and a 50K TMR contribution, and the maximum TMR for all devices are between 100% to 600%. The devices can withstand current densities up to 4000A/cm² and voltages up to 5V which is promising for a wide range of future applications.</p>


2021 ◽  
Vol 305 ◽  
pp. 124747
Author(s):  
Rodolfo Lorenzo ◽  
Leonel Mimendi ◽  
Dong Yang ◽  
Haitao Li ◽  
Theodora Mouka ◽  
...  

2021 ◽  
Vol 106 ◽  
pp. 103366
Author(s):  
Hisato Matsumiya ◽  
Tomomi Yagi ◽  
John H.G. Macdonald
Keyword(s):  

2021 ◽  
Author(s):  
Jack Stevenson ◽  
Nicola Giuseppe Fenu ◽  
Jamie Chilles ◽  
Alexander Cochran

2021 ◽  
Vol 926 ◽  
Author(s):  
S. Boury ◽  
I. Sibgatullin ◽  
E. Ermanyuk ◽  
N. Shmakova ◽  
P. Odier ◽  
...  

We present an experimental and numerical study of the nonlinear dynamics of an inertial wave attractor in an axisymmetric geometrical setting. The rotating ring-shaped fluid domain is delimited by two vertical coaxial cylinders, a conical bottom and a horizontal wave generator at the top: the vertical cross-section is a trapezium, while the horizontal cross-section is a ring. Forcing is introduced via axisymmetric low-amplitude volume-conserving oscillatory motion of the upper lid. The experiment shows an important result: at sufficiently strong forcing and long time scale, a saturated fully nonlinear regime develops as a consequence of an energy transfer draining energy towards a slow two-dimensional manifold represented by a regular polygonal system of axially oriented cyclonic vortices undergoing a slow prograde motion around the inner cylinder. We explore the long-term nonlinear behaviour of the system by performing a series of numerical simulations for a set of fixed forcing amplitudes. This study shows a rich variety of dynamical regimes, including a linear behaviour, a triadic resonance instability, a progressive frequency enrichment reminiscent of weak inertial wave turbulence and the generation of a slow manifold in the form of a polygonal vortex cluster confirming the experimental observation. This vortex cluster is discussed in detail, and we show that it stems from the summation and merging of wave-like components of the vorticity field. The nature of these wave components, the possibility of their detection under general conditions and the ultimate fate of the vortex clusters at even longer time scale remain to be explored.


Sign in / Sign up

Export Citation Format

Share Document