plane shear
Recently Published Documents


TOTAL DOCUMENTS

1572
(FIVE YEARS 307)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Vol 252 ◽  
pp. 113609
Author(s):  
Fangyuan Dong ◽  
Hanpeng Wang ◽  
Fangming Jiang ◽  
Qiong Xing ◽  
Jiangtao Yu
Keyword(s):  

2022 ◽  
Vol 58 (4) ◽  
pp. 179-186
Author(s):  
Constantin Stochioiu ◽  
Anca Deca ◽  
Anton Hadar ◽  
Horia Gheorghiu

The present paper is aimed at studying the in-plane shear response of a flax fiber - epoxy resin composite laminate. Rectangular specimens, with �45� laminate orientation with respect to loading direction were used for the experimental procedure. Tensile testing up to failure allowed to extract the shear strain-shear stress curve, which have shown a linear domain, up to approximately 25 MPa, where a shear modulus was calculated, of 1.67 GPa and a Poisson ratio of 0.7, value which is typical for off axis laminates. Strain measurement during these tests, using Digital Image Correlation, have shown that, at high stress levels, concentrators occur in the specimen in the region of failure. Repeated loading tests have shown that the material stiffens approximately 9% when increasing loading speed, leading to conclude that a viscoelastic component of the deformation is present during loading. Repeated creep-recovery tests showed that, for longer periods of time, viscoplastic deformations appear as well, with an exponential evolution with respect to the creep duration.


2022 ◽  
Vol 35 ◽  
pp. 210-218
Author(s):  
Kadir Bilisik ◽  
Gulhan Erdogan ◽  
Nesrin Sahbaz Karaduman ◽  
Erdal Sapanci ◽  
Sila Gungor

2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Matthias Drvoderic ◽  
Martin Pletz ◽  
Clara Schuecker

A model that predicts the stiffness degradation in multidirectional reinforced laminates due to off-axis matrix cracks is proposed and evaluated using data from fatigue experiments. Off-axis cracks are detected in images from the fatigue tests with automated crack detection to compute the crack density of the off-axis cracks which is used as the damage parameter for the degradation model. The purpose of this study is to test the effect of off-axis cracks on laminate stiffness for different laminate configurations. The hypothesis is that off-axis cracks have the same effect on the stiffness of a ply regardless of the acting stress components as long as the transverse stress is positive. This hypothesis proves to be wrong. The model is able to predict the stiffness degradation well for laminates with a ply orientation similar to the one used for calibration but deviates for plies with different in-plane shear stress. This behavior can be explained by the theory that off-axis cracks develop by two different micro damage modes depending on the level of in-plane shear stress. It is found that besides influencing the initiation and growth of off-axis cracks, the stiffness degradation is also mode dependent.


Author(s):  
Matheus Urzedo Quirino ◽  
Volnei Tita ◽  
Marcelo Leite Ribeiro

This work presents a viscoelastic in-plane damage model for fibrous composites. The material behavior is modeled as linear viscoelastic, with brittle failure in the fiber-dominated direction, and progressive degradation of the matrix-dominated properties, when the composite is loaded perpendicularly to the fibers or in in-plane shear. An evaluation procedure has been performed by comparing computational stress-strain curves against tensile tests curves under three different displacement rates. In addition, a calibration of the viscoelastic properties, by means of the response surface methodology, is also presented. The proposed material model has shown reasonable performance up to the material reaching an experimentally-verified modulus transition zone. Besides, the viscoelastic calibration procedure has produced a good agreement with the experimental results, concerning maximum stresses. It was observed that the computational stress-strain curve has deviated from the experimental one for higher stress values, indicating that it is necessary to improve the assessment of the nonlinear phenomena, which occur within the material.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongling Yu ◽  
Huiling Zhang ◽  
Jiaqi Yi ◽  
Yongzhen Fang ◽  
Nanxing Wu

To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in g r in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.


2021 ◽  
Vol 5 (4) ◽  
pp. 255
Author(s):  
Yaswanth Sai Jetti ◽  
Martin Ostoja-Starzewski

The scale dependence of the effective anti-plane shear modulus response in microstructures with statistical ergodicity and spatial wide-sense stationarity is investigated. In particular, Cauchy and Dagum autocorrelation functions which can decouple the fractal and the Hurst effects are used to describe the random shear modulus fields. The resulting stochastic boundary value problems (BVPs) are set up in line with the Hill–Mandel condition of elastostatics for different sizes of statistical volume elements (SVEs). These BVPs are solved using a physics-based cellular automaton (CA) method that is applicable for anti-plane elasticity to study the scaling of SVEs towards a representative volume element (RVE). This progression from SVE to RVE is described through a scaling function, which is best approximated by the same form as the Cauchy and Dagum autocorrelation functions. The scaling function is obtained by fitting the scaling data from simulations conducted over a large number of random field realizations. The numerical simulation results show that the scaling function is strongly dependent on the fractal dimension D, the Hurst parameter H, and the mesoscale δ, and is weakly dependent on the autocorrelation function. Specifically, it is found that a larger D and a smaller H results in a higher rate of convergence towards an RVE with respect to δ.


Sign in / Sign up

Export Citation Format

Share Document