An Approach to Meromorphic Approximation in a Stein Manifold

Author(s):  
Clement H. Lutterodt
2018 ◽  
Vol 18 (3) ◽  
pp. 285-287
Author(s):  
Xiaoyang Chen

AbstractLet X bea Stein manifold with an anti-holomorphic involution τ and nonempty compact fixed point set Xτ. We show that X is diffeomorphic to the normal bundle of Xτ provided that X admits a complete Riemannian metric g of nonnegative sectional curvature such that τ*g = g.


2006 ◽  
Vol 13 (1) ◽  
pp. 7-10
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a holomorphically convex complex manifold and Exc(𝑋) ⊆ 𝑋 the union of all positive dimensional compact analytic subsets of 𝑋. We assume that Exc(𝑋) ≠ 𝑋 and 𝑋 is not a Stein manifold. Here we prove the existence of a holomorphic vector bundle 𝐸 on 𝑋 such that is not holomorphically trivial for every open neighborhood 𝑈 of Exc(𝑋) and every integer 𝑚 ≥ 0. Furthermore, we study the existence of holomorphic vector bundles on such a neighborhood 𝑈, which are not extendable across a 2-concave point of ∂(𝑈).


2006 ◽  
Vol 86 (1) ◽  
pp. 1-41 ◽  
Author(s):  
L. Baratchart ◽  
F. Mandréa ◽  
E.B. Saff ◽  
F. Wielonsky

2000 ◽  
Vol 02 (03) ◽  
pp. 349-363 ◽  
Author(s):  
RICHARD HIND

We will demonstrate that up to Stein homotopy there is a unique Stein manifold which has a strictly pseudoconvex boundary diffeomorphic to ℝP3. The manifold is a complexification of S2.


1963 ◽  
Vol 23 ◽  
pp. 121-152 ◽  
Author(s):  
Hideki Ozeki

In topology, one can define in several ways the Chern class of a vector bundle over a certain topological space (Chern [2], Hirzebruch [7], Milnor [9], Steenrod [15]). In algebraic geometry, Grothendieck has defined the Chern class of a vector bundle over a non-singular variety. Furthermore, in the case of differentiable vector bundles, one knows that the set of differentiable cross-sections to a bundle forms a finitely generated projective module over the ring of differentiable functions on the base manifold. This gives a one to one correspondence between the set of vector bundles and the set of f.g.-projective modules (Milnor [10]). Applying Grauert’s theorems (Grauert [5]), one can prove that the same statement holds for holomorphic vector bundles over a Stein manifold.


Sign in / Sign up

Export Citation Format

Share Document