An automated device for solid-phase multiple peptide synthesis

Peptides 1990 ◽  
1991 ◽  
pp. 204-205 ◽  
Author(s):  
J. Neimark ◽  
J. P. Briand
Author(s):  
luis camacho III ◽  
Bryan J. Lampkin ◽  
Brett VanVeller

We describe a method to protect the sensitive stereochemistry of the thioamide—in analogy to the protection of the functional groups of amino acid side chains—in order to preserve the thioamide moiety during peptide elongation.<br>


2004 ◽  
Vol 8 (4) ◽  
pp. 291-301 ◽  
Author(s):  
Giuseppina Sabatino ◽  
Mario Chelli ◽  
Alberto Brandi ◽  
Anna Papini

1991 ◽  
Vol 56 (2) ◽  
pp. 491-498 ◽  
Author(s):  
Bernard Lammek ◽  
Izabela Derdowska ◽  
Tomasz M. Wierzba ◽  
Witold Juzwa

In an attempt to determine some of the structural features in position 1 that account for V1 antagonism, four new analogues of arginine-vasopressin were synthesized and the effect of the modifications on the vasoconstrictor activity was checked using isolated mesenteric arterial vessels of rats. The protected precursors required for these analogues were synthesized by a solid phase method of peptide synthesis. One of the reported analogues, namely [1-(4-mercapto-4-tetrahydrothiopyraneacetic acid)., 2-O-methyltyrosine, 8-arginine]vasopressin appears to be a potent competitive antagonist of the vasoconstrictor effect by AVP.


In the years since the publication of Atherton and Sheppard's volume, the technique of Fmoc solid-phase peptide synthesis has matured considerably and is now the standard approach for the routine production of peptides. The basic problems outstanding at the time of publication of this earlier work have now been, for the most part, solved. As a result, innovators in the field have focussed their efforts to develop methodologies and chemistry for the synthesis of more complex structures. The focus of this new volume is much broader, and covers not only the essential procedures for the production of linear peptides but also more advanced techniques for preparing cyclic, side-chain modified, phospho- and glycopeptides. Many other methods also deserving attention have been included: convergent peptide synthesis; peptide-protein conjugation; chemoselective ligation; and chemoselective purification. The difficult preparation of cysteine and methionine-containing peptides is also covered, as well as methods for overcoming aggregation during peptide chain assembly and a survey of available automated instrumentation.


2021 ◽  
Vol 6 (11) ◽  
pp. 2648-2648
Author(s):  
Othman Al Musaimi ◽  
Richard Wisdom ◽  
Peter Talbiersky ◽  
Beatriz G. De La Torre ◽  
Fernando Albericio

2009 ◽  
Vol 62 (10) ◽  
pp. 1339 ◽  
Author(s):  
Candy K. Y. Chun ◽  
Richard J. Payne

Several dendrimers possessing multiple copies of peptides and glycopeptides belonging to the MUC1 eicosapeptide tandem repeat sequence have been prepared. Fmoc-strategy solid-phase peptide synthesis was used to construct the peptides and glycopeptides, which were conjugated to suitably functionalized dendrimer cores using the copper-catalyzed azide-alkyne cycloaddition reaction to produce multivalent peptide and glycopeptide dendrimers.


Tetrahedron ◽  
1976 ◽  
Vol 32 (9) ◽  
pp. 1069-1071 ◽  
Author(s):  
Godefridus I. Tesser ◽  
Jan T.W.A.R.M. Buis ◽  
Erik Th.M. Wolters ◽  
Elizabeth G.A.M. Bothé-Helmes

Sign in / Sign up

Export Citation Format

Share Document