Quantum Lie Algebras and Related Problems

Author(s):  
V. K. Kharchenko
1996 ◽  
Vol 29 (8) ◽  
pp. 1703-1722 ◽  
Author(s):  
Gustav W Delius ◽  
Andreas Hüffmann

2006 ◽  
Vol 56 (11) ◽  
pp. 2289-2325 ◽  
Author(s):  
Alexander Schmidt ◽  
Hartmut Wachter

1998 ◽  
Vol 31 (8) ◽  
pp. 1995-2019 ◽  
Author(s):  
Gustav W Delius ◽  
Christopher Gardner ◽  
Mark D Gould

2003 ◽  
Vol 36 (9) ◽  
pp. 2271-2287
Author(s):  
C sar Bautista ◽  
Mar a Araceli Juar z-Ram rez

2004 ◽  
Vol 19 (supp02) ◽  
pp. 240-247 ◽  
Author(s):  
A. P. ISAEV ◽  
O. OGIEVETSKY

We continue our study of quantum Lie algebras, an important class of quadratic algebras arising in the Woronowicz calculus on a quantum group. Quantum Lie algebras are generalizations of Lie (super)algebras. Many notions from the theory of Lie (super)algebras admit "quantum" analogues. In particular, there is a BRST operator Q(Q2=0) which generates the differential in the Woronowicz theory and gives information about (co)homologies of quantum Lie algebras. In our previous papers a recurrence relation for the operator Q for quantum Lie algebras was given. Here we solve this recurrence relation and obtain an explicit formula for the BRST operator.


1996 ◽  
Vol 29 (17) ◽  
pp. 5611-5617 ◽  
Author(s):  
Gustav W Delius ◽  
Andreas Hüffmann ◽  
Mark D Gould ◽  
Yao-Zhong Zhang

1993 ◽  
Vol 157 (2) ◽  
pp. 305-329 ◽  
Author(s):  
Peter Schupp ◽  
Paul Watts ◽  
Bruno Zumino

Sign in / Sign up

Export Citation Format

Share Document