scholarly journals The Solar Origin of Corotating Interaction Regions and their Formation in the Inner Heliosphere

Author(s):  
A. Balogh ◽  
V. Bothmer ◽  
N. U. Crooker ◽  
R. J. Forsyth ◽  
G. Gloeckler ◽  
...  
Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
Agnieszka Gil ◽  
Renata Modzelewska ◽  
Anna Wawrzaszek ◽  
Bozena Piekart ◽  
Tadeusz Milosz

AbstractThe solar rotation period is the most prominent mid-term periodicity in the temporal behaviour of solar, heliospheric, and geomagnetic parameters. It is also a cause of the repeatedly appearing geomagnetic storms originating from the corotating interaction regions (CIRs). Since geomagnetic CIR-driven storms have a natural periodic character, and geomagnetic storms impact energy infrastructure via geomagnetically induced currents, it is of interest whether this periodic character is also noticeable in the temporal behaviour of electrical-grid failures (EGFs), which, at least to some extent, might be of solar origin.


Solar Physics ◽  
2015 ◽  
Vol 290 (8) ◽  
pp. 2291-2309 ◽  
Author(s):  
T. M. Conlon ◽  
S. E. Milan ◽  
J. A. Davies ◽  
A. O. Williams

Solar Physics ◽  
2013 ◽  
Vol 285 (1-2) ◽  
pp. 201-216 ◽  
Author(s):  
J. A. Gonzalez-Esparza ◽  
E. Romero-Hernandez ◽  
P. Riley

1981 ◽  
Vol 1 (3) ◽  
pp. 155-158
Author(s):  
R. Gall ◽  
B.T. Thomas ◽  
G. Vidargas

2013 ◽  
Vol 440 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Yannick J. L. Michaux ◽  
Anthony F. J. Moffat ◽  
André-Nicolas Chené ◽  
Nicole St-Louis

Abstract Examination of the temporal variability properties of several strong optical recombination lines in a large sample of Galactic Wolf–Rayet (WR) stars reveals possible trends, especially in the more homogeneous WC than the diverse WN subtypes, of increasing wind variability with cooler subtypes. This could imply that a serious contender for the driver of the variations is stochastic, magnetic subsurface convection associated with the 170 kK partial-ionization zone of iron, which should occupy a deeper and larger zone of greater mass in cooler WR subtypes. This empirical evidence suggests that the heretofore proposed ubiquitous driver of wind variability, radiative instabilities, may not be the only mechanism playing a role in the stochastic multiple small-scaled structures seen in the winds of hot luminous stars. In addition to small-scale stochastic behaviour, subsurface convection guided by a global magnetic field with localized emerging loops may also be at the origin of the large-scale corotating interaction regions as seen frequently in O stars and occasionally in the winds of their descendant WR stars.


2007 ◽  
Vol 40 (3) ◽  
pp. 348-352 ◽  
Author(s):  
M.R. Da Silva ◽  
A. Dal Lago ◽  
E. Echer ◽  
A. de Lucas ◽  
W.D. Gonzalez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document