scholarly journals On the origin of variable structures in the winds of hot luminous stars

2013 ◽  
Vol 440 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Yannick J. L. Michaux ◽  
Anthony F. J. Moffat ◽  
André-Nicolas Chené ◽  
Nicole St-Louis

Abstract Examination of the temporal variability properties of several strong optical recombination lines in a large sample of Galactic Wolf–Rayet (WR) stars reveals possible trends, especially in the more homogeneous WC than the diverse WN subtypes, of increasing wind variability with cooler subtypes. This could imply that a serious contender for the driver of the variations is stochastic, magnetic subsurface convection associated with the 170 kK partial-ionization zone of iron, which should occupy a deeper and larger zone of greater mass in cooler WR subtypes. This empirical evidence suggests that the heretofore proposed ubiquitous driver of wind variability, radiative instabilities, may not be the only mechanism playing a role in the stochastic multiple small-scaled structures seen in the winds of hot luminous stars. In addition to small-scale stochastic behaviour, subsurface convection guided by a global magnetic field with localized emerging loops may also be at the origin of the large-scale corotating interaction regions as seen frequently in O stars and occasionally in the winds of their descendant WR stars.

1999 ◽  
Vol 169 ◽  
pp. 294-302 ◽  
Author(s):  
Stanley P. Owocki

AbstractI review simulations of Co-rotating Interaction Regions (CIRs) in line-driven stellar winds. Previous CIR models have been based on a local, Sobolev treatment of the line-force, which effectively suppresses the strong, small-scale instability intrinsic to line-driving. Here I describe a new “3-ray-aligned-grid” method for computing the nonlocal, smooth-source-function line-force in 2D models that do include this line-driven instability. Preliminary results indicate that key overall features of large-scale CIRs can be quite similar in both Sobolev and non-Sobolev treatments, if the level of instability-generated wind structure is not too great. However, in certain models wherein the unstable self-excitation of wind variability penetrates back to the wind base, the stochastic, small-scale structure can become so dominant that it effectively disrupts any large-scale, CIR pattern.


2013 ◽  
Vol 9 (S302) ◽  
pp. 334-337
Author(s):  
Alexandre David-Uraz ◽  
Gregg A. Wade ◽  
Véronique Petit ◽  
Asif ud-Doula

AbstractOB stars are known to exhibit various types of wind variability, as detected in their ultraviolet spectra, amongst which are the ubiquitous discrete absorption components (DACs). These features have been associated with large-scale azimuthal structures extending from the base of the wind to its outer regions: corotating interaction regions (CIRs). There are several competing hypotheses as to which physical processes may perturb the star's surface and generate CIRs, including magnetic fields and non radial pulsations (NRPs), the subjects of this paper with a particular emphasis on the former. Although large-scale magnetic fields are ruled out, magnetic spots deserve further investigation, both on the observational and theoretical fronts.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


1976 ◽  
Vol 71 ◽  
pp. 323-344 ◽  
Author(s):  
K.-H. Rädler

One of the most striking features of both the magnetic field and the motions observed at the Sun is their highly irregular or random character which indicates the presence of rather complicated magnetohydrodynamic processes. Of great importance in this context is a comprehension of the behaviour of the large scale components of the magnetic field; large scales are understood here as length scales in the order of the solar radius and time scales of a few years. Since there is a strong relationship between these components and the solar 22-years cycle, an insight into the mechanism controlling these components also provides for an insight into the mechanism of the cycle. The large scale components of the magnetic field are determined not only by their interaction with the large scale components of motion. On the contrary, a very important part is played also by an interaction between the large and the small scale components of magnetic field and motion so that a very complicated situation has to be considered.


2004 ◽  
Vol 11 (5/6) ◽  
pp. 535-543 ◽  
Author(s):  
Y. Voitenko ◽  
M. Goossens

Abstract. There is abundant observational evidence that the energization of plasma particles in space is correlated with an enhanced activity of large-scale MHD waves. Since these waves cannot interact with particles, we need to find ways for these MHD waves to transport energy in the dissipation range formed by small-scale or high-frequency waves, which are able to interact with particles. In this paper we consider the dissipation range formed by the kinetic Alfvén waves (KAWs) which are very short- wavelengths across the magnetic field irrespectively of their frequency. We study a nonlocal nonlinear mechanism for the excitation of KAWs by MHD waves via resonant decay AW(FW)→KAW1+KAW2, where the MHD wave can be either an Alfvén wave (AW), or a fast magneto-acoustic wave (FW). The resonant decay thus provides a non-local energy transport from large scales directly in the dissipation range. The decay is efficient at low amplitudes of the magnetic field in the MHD waves, B/B0~10-2. In turn, KAWs are very efficient in the energy exchange with plasma particles, providing plasma heating and acceleration in a variety of space plasmas. An anisotropic energy deposition in the field-aligned degree of freedom for the electrons, and in the cross-field degrees of freedom for the ions, is typical for KAWs. A few relevant examples are discussed concerning nonlinear excitation of KAWs by the MHD wave flux and consequent plasma energization in the solar corona and terrestrial magnetosphere.


2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


1993 ◽  
Vol 157 ◽  
pp. 255-261
Author(s):  
N. Kleeorin ◽  
I. Rogachevskii

The nonlinear (in terms of the large-scale magnetic field) effect of the modification of the magnetic force by an advanced small-scale magnetohydrodynamic (MHD) turbulence is considered. The phenomenon is due to the generation of magnetic fluctuations at the expense of hydrodynamic pulsations. It results in a decrease of the elasticity of the large-scale magnetic field.The renormalization group (RNG) method was employed for the investigation of the MHD turbulence at the large magnetic Reynolds number. It was found that the level of the magnetic fluctuations can exceed that obtained from the equipartition assumption due to the inverse energy cascade in advanced MHD turbulence.This effect can excite an instability of the large-scale magnetic field due to the energy transfer from the small-scale turbulent pulsations. This instability is an example of the inverse energy cascade in advanced MHD turbulence. It may act as a mechanism for the large-scale magnetic ropes formation in the solar convective zone and spiral galaxies.


2005 ◽  
Vol 23 (2) ◽  
pp. 487-498 ◽  
Author(s):  
H. C. Scoffield ◽  
T. K. Yeoman ◽  
D. M. Wright ◽  
S. E. Milan ◽  
A. N. Wright ◽  
...  

Abstract. On 14 December 1999, a large-scale ULF wave event was observed by the Hankasalmi radar of the SuperDARN chain. Simultaneously, the FAST satellite passed through the Hankasalmi field-of-view, measuring the magnetic field oscillations of the wave at around 2000km altitude, along with the precipitating ion and electron populations associated with these fields. A simple field line resonance model of the wave has been created and scaled using the wave's spatial and temporal characteristics inferred from SuperDARN and IMAGE magnetometer data. Here the model calculated field-aligned current is compared with field-aligned currents derived from the FAST energetic particle spectra and magnetic field measurements. This comparison reveals the small-scale structuring and energies of the current carriers in a large-scale Alfvén wave, a topic, which at present, is of considerable theoretical interest. When FAST traverses a region of the wave involving low upward field-aligned current densities, the current appears to be carried by unstructured downgoing electrons of energies less than 30eV. A downward current region appears to be carried partially by upgoing electrons below the FAST energy detection threshold, but also consists of a mixture of hotter downgoing magnetospheric electrons and upgoing ionospheric electrons of energies <30eV, with the hotter upgoing electrons presumably representing those upgoing electrons which have been accelerated by the wave field above the low energy detection threshold of FAST. A stronger interval of upward current shows that small-scale structuring of scale ~50km has been imposed on the current carriers, which are downgoing magnetospheric electrons of energy 0-500eV.


1981 ◽  
Vol 94 ◽  
pp. 373-391
Author(s):  
Gerhard Haerendel

Two processes are discussed which violate the frozen-in condition in a highly conducting plasma, reconnection and the auroral acceleration process. The first applies to situations in which . It plays an important role in the interaction of the solar wind with the Earth's magnetic field and controls energy input into as well as energetic particle release from the magnetosphere. Detailed in situ studies of the process on the dayside magnetopause reveal its transient and small-scale nature. The auroral acceleration process occurs in the low magnetosphere (β « 1) and accompanies sudden releases of magnetic shear stresses which exist in large-scale magnetospheric-ionospheric current circuits. The process is interpreted as a kind of breaking. The movements of the magnetospheric plasma which lead to a relief of the magnetic tensions occur in thin sheets and are decoupled along the magnetic field lines by parallel electric potential drops. It is this voltage that accelerates the primary auroral particles. The visible arcs are then traces of the magnetic breaking process at several 1000 km altitude.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


Sign in / Sign up

Export Citation Format

Share Document