scholarly journals Polarization light curve modelling of corotating interaction regions in the wind of the Wolf–Rayet star WR 6

2017 ◽  
Vol 474 (2) ◽  
pp. 1886-1899 ◽  
Author(s):  
N. St-Louis ◽  
Patrick Tremblay ◽  
Richard Ignace
2020 ◽  
Vol 497 (1) ◽  
pp. 1127-1134
Author(s):  
Richard Ignace ◽  
Nicole St-Louis ◽  
Raman K Prinja

ABSTRACT The structured winds of single massive stars can be classified into two broad groups: stochastic structure and organized structure. While the former is typically identified with clumping, the latter is typically associated with rotational modulations, particularly the paradigm of corotating interaction regions (CIRs). While CIRs have been explored extensively in the ultraviolet band, and moderately in the X-ray and optical, here we evaluate radio variability from CIR structures assuming free–free opacity in a dense wind. Our goal is to conduct a broad parameter study to assess the observational feasibility, and to this end, we adopt a phenomenological model for a CIR that threads an otherwise spherical wind. We find that under reasonable assumptions, it is possible to obtain radio variability at the 10 per cent level. The detailed structure of the folded light curve depends not only on the curvature of the CIR, the density contrast of the CIR relative to the wind, and viewing inclination, but also on wavelength. Comparing light curves at different wavelengths, we find that the amplitude can change, that there can be phase shifts in the waveform, and the entire waveform itself can change. These characterstics could be exploited to detect the presence of CIRs in dense, hot winds.


2011 ◽  
Vol 735 (1) ◽  
pp. 34 ◽  
Author(s):  
A.-N. Chené ◽  
A. F. J. Moffat ◽  
C. Cameron ◽  
R. Fahed ◽  
R. C. Gamen ◽  
...  

Solar Physics ◽  
2015 ◽  
Vol 290 (8) ◽  
pp. 2291-2309 ◽  
Author(s):  
T. M. Conlon ◽  
S. E. Milan ◽  
J. A. Davies ◽  
A. O. Williams

Solar Physics ◽  
2013 ◽  
Vol 285 (1-2) ◽  
pp. 201-216 ◽  
Author(s):  
J. A. Gonzalez-Esparza ◽  
E. Romero-Hernandez ◽  
P. Riley

2013 ◽  
Vol 440 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Yannick J. L. Michaux ◽  
Anthony F. J. Moffat ◽  
André-Nicolas Chené ◽  
Nicole St-Louis

Abstract Examination of the temporal variability properties of several strong optical recombination lines in a large sample of Galactic Wolf–Rayet (WR) stars reveals possible trends, especially in the more homogeneous WC than the diverse WN subtypes, of increasing wind variability with cooler subtypes. This could imply that a serious contender for the driver of the variations is stochastic, magnetic subsurface convection associated with the 170 kK partial-ionization zone of iron, which should occupy a deeper and larger zone of greater mass in cooler WR subtypes. This empirical evidence suggests that the heretofore proposed ubiquitous driver of wind variability, radiative instabilities, may not be the only mechanism playing a role in the stochastic multiple small-scaled structures seen in the winds of hot luminous stars. In addition to small-scale stochastic behaviour, subsurface convection guided by a global magnetic field with localized emerging loops may also be at the origin of the large-scale corotating interaction regions as seen frequently in O stars and occasionally in the winds of their descendant WR stars.


2007 ◽  
Vol 40 (3) ◽  
pp. 348-352 ◽  
Author(s):  
M.R. Da Silva ◽  
A. Dal Lago ◽  
E. Echer ◽  
A. de Lucas ◽  
W.D. Gonzalez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document