Diffusion Edge-Flame Quenching

Author(s):  
Joan Boulanger ◽  
Luc Vervisch
Keyword(s):  
2020 ◽  
pp. 146808742097290
Author(s):  
CP Ranasinghe ◽  
W Malalasekera

A flame front is quenched when approaching a cold wall due to excessive heat loss. Accurate computation of combustion rate in such situations requires accounting for near wall flame quenching. Combustion models, developed without considering wall effects, cannot be used for wall bounded combustion modelling, as it leads to wall flame acceleration problem. In this work, a new model was developed to estimate the near wall combustion rate, accommodating quenching effects. The developed correlation was then applied to predict the combustion in two spark ignition engines in combination with the famous Bray–Moss–Libby (BML) combustion model. BML model normally fails when applied to wall bounded combustion due to flame wall acceleration. Results show that the proposed quenching correlation has significantly improved the performance of BML model in wall bounded combustion. As a second step, in order to further enhance the performance, the BML model was modified with the use of Kolmogorov–Petrovski–Piskunov analysis and fractal theory. In which, a new dynamic formulation is proposed to evaluate the mean flame wrinkling scale, there by accounting for spatial inhomogeneity of turbulence. Results indicate that the combination of the quenching correlation and the modified BML model has been successful in eliminating wall flame acceleration problem, while accurately predicting in-cylinder pressure rise, mass burn rates and heat release rates.


1988 ◽  
Vol 21 (1) ◽  
pp. 1853-1860 ◽  
Author(s):  
W.M. Huang ◽  
S.R. Vosen ◽  
R. Greif

Author(s):  
G. Fernandez ◽  
B. Larrouturou ◽  
G. I. Sivashinsky

2018 ◽  
Vol 21 (6) ◽  
pp. 1055-1066 ◽  
Author(s):  
Mingyuan Tao ◽  
Haiwen Ge ◽  
Brad VanDerWege ◽  
Peng Zhao

The formation of fuel wall film is a primary cause for efficiency loss and emissions of unburnt hydrocarbons and particulate matters in direct injection engines, especially during cold start. When a premixed flame propagates toward a wall film of liquid fuel, flame structure and propagation could be fundamentally affected by the vaporization flux and the induced thermal and concentration stratifications. It is, therefore, of both fundamental and practical significance to investigate the consequent effect of a wall film on flame quenching. In this work, the interaction of a laminar premixed flame and a fuel wall film has been studied based on one-dimensional direct numerical simulation with detailed chemistry and transport. The mass and energy balance at the wall film interface have been implemented as boundary condition to resolve vaporization. Parametric studies are further conducted with various initial temperatures of 600–800 K, pressures of 7–15 atm, fuel film and wall temperatures of 300–400 K. By comparing the cases with an isothermal dry wall, it is found that the existence of a wall film always promotes flame quenching and causes more emissions. Although quenching distance can vary significantly among conditions, the local equivalence ratio at quenching is largely constant, suggesting the dominant effects of rich mixture and rich flammability limit. By further comparing constant volume and constant pressure conditions, it is observed that pressure and boiling point variation dominate the vaporization boundary layer development and flame quenching, which further suggests that increased pressure during compression stroke in engines can significantly suppress film vaporization. Emissions of unburnt hydrocarbon, soot precursor and low-temperature products before and after flame quenching are also investigated in detail. The results lead to useful insights on the interaction of flame propagation and wall film in well-controlled simplified configurations and shed light on the development of wall film models in three-dimensional in-cylinder combustion simulation.


1981 ◽  
Vol 41 ◽  
pp. 157-170 ◽  
Author(s):  
W. Hocks ◽  
N. Peters ◽  
G. Adomeit
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document