EM Wave Propagation Analysis in Plasma Covered Radar Absorbing Material

Author(s):  
Hema Singh ◽  
Simy Antony ◽  
Harish Singh Rawat
Author(s):  
A Ghorbanpour Arani ◽  
M Jamali ◽  
AH Ghorbanpour-Arani ◽  
R Kolahchi ◽  
M Mosayyebi

The original formulation of the quasi-3D sinusoidal shear deformation plate theory (SSDPT) is here extended to the wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects. The sandwich structure contains a single layered graphene sheet as core integrated with zinc oxide layers as sensors and actuators. The single layered graphene sheet and zinc oxide layers are subjected, respectively, to 2D magnetic and 3D electric fields. Structural damping and surface effects are assumed using Kelvin–Voigt and Gurtin–Murdoch theories, respectively. The system is rested on an elastic medium which is simulated with a novel model namely as orthotropic visco-Pasternak foundation. An exact solution is applied in order to obtain the frequency, cut-off and escape frequencies. A displacement and velocity feedback control algorithm is applied for the active control of the frequency through a closed-loop control with bonded distributed zinc oxide sensors and actuators. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, magnetic field, viscoelastic foundation, surface stress, applied voltage, velocity feedback control gain and structural damping on the wave propagation behavior of nanostructure. Results depict that with increasing the structural damping coefficient, frequency significantly decreases.


2009 ◽  
Vol 67 ◽  
pp. 59-64 ◽  
Author(s):  
Rahul Sharma ◽  
Ramesh Chandra Agarwala ◽  
Vijaya Agarwala

Nano radar absorbing material (NRAM) i.e. BaMe2Fe16O27 (Me2+=Fe2+) powder (10 nm) is coated with amorphous Ni-P nano layer (5-10 nm) by using electroless (EL) technology to develop EL Ni-P/NRAM nanocomposite powder. The experimental processes parameters and EL Ni-P bath composition were optimized to obtain the deposition. As-deposited nanocomposite powder was microwave annealed (MWA) with increasing radiation power from 160 to 760 watts for 5 minutes. The surface morphology, elemental contents, phase transformation and magnetic properties of NRAM powders were examined under field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) respectively. Maximum reflection loss (RL) 33.75 dB at 15.80 GHz for nanocomposite powder MWA at 760 watt was obtained the absorption range under −15 dB is from 13.76 to 16.77 GHz with 2 mm thickness layer in Ku Band. Excellent microwave absorption properties due to accurate electromagnetic (EM) match in the nanocomposite microstructure, a strong natural resonance and multipolarization. Such (Ni+ Ni3P)/NRAM nanocomposite powders may be attractive candidates for EM absorption.


Sign in / Sign up

Export Citation Format

Share Document