poroelastic media
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 87)

H-INDEX

25
(FIVE YEARS 5)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinzhou Zhao ◽  
Qing Yin ◽  
John McLennan ◽  
Yongming Li ◽  
Yu Peng ◽  
...  

Fluid-solid coupling in fractured reservoirs plays a critical role for optimizing and managing in energy and geophysical engineering. Computational difficulties associated with sharp fracture models motivate phase field fracture modeling. However, for geomechanical problems, the fully coupled hydromechanical modeling with the phase field framework is still under development. In this work, we propose a fluid-solid fully coupled model, in which discrete fractures are regularized by the phase field. Specifically, this model takes into account the complex coupled interaction of Darcy-Biot-type fluid flow in poroelastic media, Reynolds lubrication governing flow inside fractures, mass exchange between fractures and matrix, and the subsequent geomechanical response of the solid. An iterative coupling method is developed to solve this multifield problem efficiently. We present numerical studies that demonstrate the performance of our model.


Author(s):  
Jiangming Xie ◽  
Maojun Li ◽  
Miao-Jung Ou

n this work, we investigate the poroelastic waves by solving the time-domain Biot-JKD equation with an efficient numerical method. The viscous dissipation occurring in the pores depends on the square root of the frequency and is described by the Johnson-Koplik-Dashen (JKD) dynamic tortuosity/permeability model. The temporal convolutions of order 1/2 shifted fractional derivatives are involved in the time-domain Biot-JKD model, causing the problem to be stiff and challenging to be implemented numerically. Based on the best relative approximation of the square-root function, we design an efficient algorithm to approximate and localize the convolution kernel by introducing a finite number of auxiliary variables that satisfy a local system of ordinary differential equations. The imperfect hydraulic contact condition is used to describe the interface boundary conditions and the Runge-Kutta discontinuous Galerkin (RKDG) method together with the splitting method is applied to compute the numerical solutions. Several numerical examples are presented to show the accuracy and efficiency of our approach.


2021 ◽  
pp. 110886
Author(s):  
Sebastian Wolf ◽  
Martin Galis ◽  
Carsten Uphoff ◽  
Alice-Agnes Gabriel ◽  
Peter Moczo ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 11004
Author(s):  
Anton Azarov ◽  
Andrey Patutin ◽  
Sergey Serdyukov

In this paper, we investigate the problem of the propagation of hydraulic fractures in a poroelastic medium that has a circular cavity. The research was conducted using the extended finite element method (XFEM) implemented in the ABAQUS software package. The problem was considered in a plane formulation. The initial crack was oriented parallel to the surface of the cavity. It was shown that the path of the hydraulic fracture depends strongly on the hydrostatic stress in the medium and the distance between the crack and the cavity. We studied the influences of the poroelastic parameters, such as permeability and the Biot coefficient, on the propagation of cracks. It was shown that the cracks were less curved when the coupled problem of poroelasticity was considered. The features of fluid pressure changes inside the fracture and at the opening of the mouth were studied. It was shown that the fluid pressure in the fracture during injection was minimally sensitive to the state of the stress in the medium, to the position of the initial crack, and to the poroelastic parameters. The solution to the problem in this setting can be used to simulate hydraulic fracturing close to mine workings during a controlled roof’s collapse to prevent it from hanging, and the formation of impervious screens to reduce airflow from the mine to degassing boreholes through the rock, for example.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6528
Author(s):  
Juan Santos ◽  
José Carcione ◽  
Jing Ba

We study the wave anelasticity (attenuation and velocity dispersion) of a periodic set of three flat porous layers saturated by two immiscible fluids. The fluids are very dissimilar in properties, namely gas, oil, and water, and, at most, three layers are required to study the problem from a general point of view. The sequence behaves as viscoelastic and transversely isotropic (VTI) at wavelengths much longer than the spatial period. Wave propagation causes fluid flow and slow P modes, inducing anelasticity. The fluids are characterized by capillary forces and relative permeabilities, which allow for the existence of two slow modes and the presence of dissipation, respectively. The methodology to study the physics is based on a finite-element uspcaling approach to compute the complex and frequency-dependent stiffnesses of the effective VTI medium. The results of the experiments indicate that there is higher dissipation and anisotropy compared to the widely used model based on an effective fluid that ignores the effects of surface tension (capillarity) and viscous flow interference between the two fluid phases.


Author(s):  
Abhilash Sreekumar ◽  
Savvas P. Triantafyllou ◽  
Fabien Chevillotte

Author(s):  
Ivar Stefansson ◽  
Eirik Keilegavlen ◽  
Sæunn Halldórsdóttir ◽  
Inga Berre

AbstractConvection-driven cooling in porous media influences thermo-poro-mechanical stresses, thereby causing deformation. These processes are strongly influenced by the presence of fractures, which dominate flow and heat transfer. At the same time, the fractures deform and propagate in response to changes in the stress state. Mathematically, the model governing the physics is tightly coupled and must account for the strong discontinuities introduced by the fractures. Over the last decade, and motivated by a number of porous media applications, research into such coupled models has advanced modelling of processes in porous media substantially. Building on this effort, this work presents a novel model that couples fracture flow and heat transfer and deformation and propagation of fractures with flow, heat transfer and thermo-poroelasticity in the matrix. The model is based on explicit representation of fractures in the porous medium and discretised using multi-point finite volume methods. Frictional contact and non-penetration conditions for the fractures are handled through active set methods, while a propagation criterion based on stress intensity factors governs fracture extension. Considering both forced and natural convection processes, numerical results show the intricate nature of thermo-poromechanical fracture deformation and propagation.


Sign in / Sign up

Export Citation Format

Share Document