strain gradient theory
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 210)

H-INDEX

48
(FIVE YEARS 16)

2021 ◽  
Vol 26 (4) ◽  
pp. 296-305
Author(s):  
Li Yun-dong ◽  
Cheng Feng ◽  
Wen Huabin

Size-dependent effects of a cantilevered piezoelectrically actuated micropipe conveying fluid are investigated. Based on the modified strain gradient beam theory, the model of system is obtained using Hamilton's principle. The motion equation is discretized into ordinary differential equations by Generalized Differential Quadrature Method (GDQM). A stability analysis of the system is completed through eigenvalue analysis. Numerical results show the effect of geometrical shape size, and length scale parameters on critical flow velocity, and critical voltage. Results prove that the modified strain gradient theory (MSGT) has a higher critical flow velocity and critical voltage than predicted by modified couple stress theory (MCST) and classical theory (CT).


2021 ◽  
Vol 11 (24) ◽  
pp. 11787
Author(s):  
Shan Zeng ◽  
Zhangtao Peng ◽  
Kaifa Wang ◽  
Baolin Wang ◽  
Jinwu Wu ◽  
...  

In this study, a sandwich piezoelectric nano-energy harvester model under compressive axial loading with a core layer fabricated of functionally graded (FG) porous material is presented based on the nonlocal strain gradient theory (NSGT). The von Karman type geometric nonlinearity and the axial loading were considered. The electromechanical governing equations were obtained using Hamilton’s principle. The nonlinear vibration frequencies, root mean square (RMS) voltage output and static buckling were obtained using the Galerkin method. The effects of different types of porous distribution, porosity coefficients, length scale parameters, nonlocal parameters, flexoelectricity, excitation frequencies, lumped mass and axial loads on the natural frequency and voltage output of nanobeams were investigated. Results show that the porous distributions, porosity coefficient of porous materials, the excitation frequencies and the axial load have a large effect on the natural frequency and voltage output of the sandwiched piezoelectric nanobeams. When the NSGT is considered, the critical buckling load depends on the values of the nonlocal parameters and strain gradient constants. In addition, the electromechanical conversion efficiency of the post-buckling process is significantly higher than that of the pre-buckling process. The flexoelectric effect can significantly increase the RMS voltage output of the energy harvester.


Author(s):  
Vahid Movahedfar ◽  
Mohammad M Kheirikhah ◽  
Younes Mohammadi ◽  
Farzad Ebrahimi

Based on modified strain gradient theory, nonlinear vibration analysis of a functionally graded piezoelectric doubly curved microshell in thermal environment has been performed in this research. Three scale parameters have been included in the modeling of thin doubly curved microshell in order to capture micro-size effects. Graded material properties between the top and bottom surfaces of functionally graded piezoelectric doubly curved microshell have been considered via incorporating power-law model. It is also assumed that the microshell is exposed to a temperature field of uniform type and the material properties are temperature-dependent. By analytically solving the governing equations based on the harmonic balance method, the closed form of nonlinear vibration frequency has been achieved. Obtained results indicate the relevance of calculated frequencies to three scale parameters, material gradation, electrical voltage, curvature radius, and temperature changes.


Sign in / Sign up

Export Citation Format

Share Document