Reservoir Surveillance and Production Optimization Workflow from Real-Time Data Advantage at a Joint Venture Gas Project

Author(s):  
Yu Yue ◽  
Vo Minh ◽  
Chaohong Xiao
2011 ◽  
Vol 51 (1) ◽  
pp. 259
Author(s):  
Rajesh Trivedi ◽  
Shripad Biniwale ◽  
Adil Jabur

With a vision of innovation, integrity and agility, Nexus Energy began first production of Longtom field in October 2009. The Longtom gas field is located in the Gippsland Basin, offshore Victoria where the produced gas is transported to Santos’ Patricia Baleen gas processing plant. All production data is acquired by Santos with the supervisory control and data acquisition (SCADA) system. The challenge for Nexus Energy was to monitor the field remotely in the absence of a data historian and to support the operational people proactively. Data acquisition from Santos, validation, and storage in a secured centralised repository were therefore key tasks. A system was needed that would not only track accurate production volumes to meet the daily contractual quantity (DCQ) production targets but that would also be aligned with Nexus’s vision for asset optimisation. We describe how real-time data is acquired, validated, and stored automatically in the absence of a data historian for Longtom field, and how the deployed system provides a framework for an integrated Production Operation System (iPOS). The solution uses an integrated methodology that allows effective monitoring of real-time data trends to anticipate and prevent potential well and equipment problems, thus assisting in meeting DCQ targets and providing effective analysis techniques for decision making. Based on full workflow automation, the system is deployed for acquisition, allocation, reporting and analysis. This has increased accuracy, accountability and timely availability of quality data, which has helped Nexus improve productivity. The comprehensive reporting tool provides access to operational and production reports via email for managers, output reports in various formats for joint venture partners, and nontechnical users without direct access to the core application. A powerful surveillance tool, integrated with the operational database, provides alarms and notifications on operation issues, which helps engineers make proactive operational decisions. The framework allows a streamlined data flow for dynamic updates of well and simulation models, improving process integration and reducing the runtime cycle.


2005 ◽  
Vol 20 (03) ◽  
pp. 229-239 ◽  
Author(s):  
Christian Peter Oberwinkler ◽  
Michael Stundner

2004 ◽  
Author(s):  
Christian Oberwinkler ◽  
Michael Stundner

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

2021 ◽  
Vol 31 (6) ◽  
pp. 7-7
Author(s):  
Valerie A. Canady
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document