Андрей Викторович Матвеев
◽
Михаил Юрьевич Машуков
◽
Анна Владимировна Нартова
◽
Наталья Николаевна Санькова
◽
Алексей Григорьевич Окунев
Исследование материалов методами микроскопии нередко включает стадию подсчета количества наблюдаемых объектов и определения их статистических параметров, для чего необходимо измерять сотни объектов. В работе описан облачный сервис DLgram01, который позволяет специалистам в области материаловедения, не имеющих навыков программирования, выполнять автоматизированную обработку изображений - определять количество и параметры (площадь, размер) изучаемых объектов. Сервис разработан с использованием новейших достижений в области глубокого машинного обучения, для обучения нейронной сети пользователю необходимо разметить несколько изучаемых объектов. Обучение нейронной сети производится автоматически за несколько минут. Важными особенностями сервиса DLgram01 является возможность корректировать результаты предсказания нейронной сети, а также получение детальной информации о всех распознанных объектах. Использование сервиса позволяет существенно сократить временные затраты на количественный анализ изображений, снизить влияние субъективного фактора, повысить точность анализа и его эргоемкость.
The study of materials by microscopy often includes counting the number of observed objects and determining their statistical parameters, for which it is necessary to measure hundreds of objects. The created DLgram01 cloud service allows specialists in the field of materials science who do not have programming skills to perform automated image processing - to determine the number and parameters (area, size) of the objects under study. The service is developed using the latest achievements in the field of deep machine learning. To train a neural network, the user needs to label only several objects. The neural network is trained automatically in a few minutes. Important features of the DLgram01 service are the ability to adjust the results of neural network prediction, as well as obtaining detailed information about all recognized objects. Using the service allows to significantly decrease the time for quantitative image analysis, reduce the influence of the subjective factor, increase the accuracy of the analysis and its ergo-intensity.