Barmer Basin

2019 ◽  
pp. 1-72
Author(s):  
Soumyajit Mukherjee ◽  
Narayan Bose ◽  
Rajkumar Ghosh ◽  
Dripta Dutta ◽  
Achyuta Ayan Misra ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Shailesh Prakash ◽  
Mohammad Zayyan ◽  
Ole Gjertsen ◽  
Manuel Centeno Acuna ◽  
Piyush Kumar Kulshrestha ◽  
...  

Abstract Raageshwari Deep Gas (RDG) field is a major gas field in the Barmer Basin of Rajasthan, India which comprises of a tight gas-condensate reservoir within the underlying thick Volcanic Complex. The Volcanic Complex comprises two major units – upper Prithvi Member (Basalt) and lower Agni Member (Felsics interbedded with older basalt). The production zone is drilled in 6" and has historically seen high level of shock & vibrations (S&V) and stick-slip (S&S) leading to multiple downhole tool failures and poor rate of penetration (ROP). Individual changes in Bit and bottom hole drilling assembly (BHA) design were not able to give satisfactory results and hence an integrated approach in terms of in-depth formation analysis, downhole vibration monitoring, correct predictive modelling, bit and BHA design was required. A proprietary formation analysis software was used to map the entire RDG field to understand the variation in terms of formation compactness, abrasiveness and impact (Figure 1,2,3 & 4). The resulting comprehensive field map thus enabled us to accurately identify wells that would be drilling through more of problematic Felsics and where higher S&V and S&S should be expected. To better understand the vibrations at the point of creation, i.e., bit, a downhole vibration recording tool was used to record vibration & stick-slip data at a frequency of 1024Hz. This tool picked up indication of a unique type of vibration occurring downhole known as High Frequency Torsional Oscillation (HFTO), that was quite detrimental to the health of bit and downhole tools. A proprietary predictive modelling software was used to optimize the bit-BHA combination to give least amount of S&V and S&S. Data from the downhole vibration recording tool, formation mapping software and offset bit designs was used to design a new bit with ridged diamond element cutters and conical diamond element cutters to drill through the highly compressive and hard basalt. The predictive modelling software identified a motorized Rotary steerable assembly (RSS) to give the best drilling dynamics with the newly designed bit. The software predicted much lower S&V and S&S with higher downhole RPM which was possible with the help of motorized RSS. Implementing the above recommendations from the various teams involved in the project, drilling dynamics was vastly improved and ROP improvement of about 45% was seen in the field. This combination was also able to drill the longest section of Felsics (826m) with unconfined compressive strengths as high as 50,000 psi in a single run with excellent dull condition of 0-1-CT-TD This paper will discuss in detail the engineering analyses done for improving drilling dynamics in field along with how HFTO was identified in field and what steps were taken to mitigate it.


2018 ◽  
Vol 77 (19) ◽  
Author(s):  
Pramod K. Rajak ◽  
Vijay K. Singh ◽  
Prakash K. Singh ◽  
Asha Lata Singh ◽  
Narendra Kumar ◽  
...  

First Break ◽  
2017 ◽  
Vol 35 (1) ◽  
Author(s):  
Sreedurga Somasundaram ◽  
Sudeep Bhat ◽  
Amian Das ◽  
Bineet Mund ◽  
Abdhudai Beohar ◽  
...  

2019 ◽  
Vol 38 (4) ◽  
pp. 268-273
Author(s):  
Maheswara Phani ◽  
Sushobhan Dutta ◽  
Kondal Reddy ◽  
Sreedurga Somasundaram

Raageshwari Deep Gas (RDG) Field is situated in the southern part of the Barmer Basin in Rajasthan, India, at a depth of 3000 m. With both clastic and volcanic lithologies, the main reservoirs are tight, and hydraulic fracturing is required to enhance productivity, especially to improve permeability through interaction of induced fractures with natural fractures. Therefore, optimal development of the RDG Field reservoirs requires characterization of faults and natural fractures. To address this challenge, a wide-azimuth 3D seismic data set over the RDG Field was processed to sharply define faults and capture anisotropy related to open natural fractures. Anisotropy was indicated by the characteristic sinusoidal nature of gather reflection events processed using conventional tilted transverse imaging (TTI); accordingly, we used orthorhombic imaging to correct for these, to quantify fracture-related anisotropy, and to yield a more correct subsurface image. During prestack depth migration (PSDM) processing of the RDG data, TTI and orthorhombic velocity modeling was done with azimuthal sectoring of reflection arrivals. The resultant PSDM data using this velocity model show substantial improvement in image quality and vertical resolution at the reservoir level compared to vintage seismic data. The improved data quality enabled analysis of specialized seismic attributes like curvature and thinned fault likelihood for more reliable characterization of faults and fractures. These attributes delineate the location and distribution of probable fracture networks within the volcanic reservoirs. Interpreted subtle faults, associated with fracture zones, were validated with microseismic, production, and image log data.


2017 ◽  
Vol 125 (5) ◽  
pp. 561-591 ◽  
Author(s):  
Swagato Dasgupta ◽  
Soumyajit Mukherjee

Sign in / Sign up

Export Citation Format

Share Document