induced fractures
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 82)

H-INDEX

22
(FIVE YEARS 5)

Geophysics ◽  
2022 ◽  
pp. 1-37
Author(s):  
Harrison Schumann ◽  
Ge Jin

We present a novel use of tube waves exited by perforation (or “perf”) shots and recorded on distributed acoustic sensing (DAS) to infer and compare the hydraulic connectivity of induced fractures near the wellbore on a stage-by-stage basis. Evaluating the fracture connectivity near the wellbore is critical since it controls the flow of the hydrocarbons from the formation to the wellbore. Currently, there are no established methods used to assess this property. However, we discuss how tube wave decay rates can be used to infer relative differences in fracture connectivity between stages and, through field observations on DAS, demonstrate the correlation between decay rates and frac effectiveness. Additionally, we consider other potential uses of this data in unconventional wells such as assessing plug integrity and constraining fracture geometry with Krauklis waves. DAS data is commonly acquired during the perf shots but primarily for fiber depth calibration purposes and has not been well studied. Our work illustrates the untapped potential of this data and how it can be easily repurposed to bring new insights about fracture characteristics in the near-wellbore region.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Fuqiang Gao ◽  
Jianzhong Li ◽  
Jinfu Lou ◽  
Shuwen Cao ◽  
Xiaomin Liu

2021 ◽  
Author(s):  
Debashis Konwar ◽  
Abhinab Das ◽  
Chandreyi Chatterjee ◽  
Fawz Naim ◽  
Chandni Mishra ◽  
...  

Abstract Borehole resistivity images and dipole sonic data analysis helps a great deal to identify fractured zones and obtain reasonable estimates of the in-situ stress conditions of geologic formations. Especially when assessing geologic formations for carbon sequestration feasibility, borehole resistivity image and borehole sonic assisted analysis provides answers on presence of fractured zones and stress-state of these fractures. While in deeper formations open fractures would favour carbon storage, in shallower formations, on the other hand, storage integrity would be potentially compromised if these fractures get reactivated, thereby causing induced seismicity due to fluid injection. This paper discusses a methodology adopted to assess the carbon dioxide sequestration feasibility of a formation in the Newark Basin in the United States, using borehole resistivity image(FMI™ Schlumberger) and borehole sonic data (SonicScaner™ Schlumberger). The borehole image was interpreted for the presence of natural and drilling-induced fractures, and also to find the direction of the horizontal stress azimuth from the identified induced fractures. Cross-dipole sonic anisotropy analysis was done to evaluate the presence of intrinsic or stress-based anisotropy in the formation and also to obtain the horizontal stress azimuth. The open or closed nature of natural fractures was deduced from both FMI fracture filling electrical character and the Stoneley reflection wave attenuation from SonicScanner monopole low frequency waveform. The magnitudes of the maximum and minimum horizontal stresses obtained from a 1-Dimensional Mechanical Earth Model were calibrated with stress magnitudes derived from the ‘Integrated Stress Analysis’ approach which takes into account the shear wave radial variation profiles in zones with visible crossover indications of dipole flexural waves. This was followed by a fracture stability analysis in order to identify critically stressed fractures. The borehole resistivity image analysis revealed the presence of abundant natural fractures and microfaults throughout the interval which was also supported by the considerable sonic slowness anisotropy present in those intervals. Stoneley reflected wave attenuation confirmed the openness of some natural fractures identified in the resistivity image. The strike of the natural fractures and microfaults showed an almost NE-SW trend, albeit with considerable variability. The azimuth of maximum horizontal stress obtained in intervals with crossover of dipole flexural waves was also found to be NE-SW in the middle part of the interval, thus coinciding with the overall trend of natural fractures. This might indicate that the stresses in those intervals are also driven by the natural fracture network. However, towards the bottom of the interval, especially from 1255ft-1380ft, where there were indications of drilling induced fractures but no stress-based sonic anisotropy, it was found that that maximum horizontal stress azimuth rotated almost about 30 degrees in orientation to an ESE-WNW trend. The stress magnitudes obtained from the 1D-Mechanical Earth Model and Integrated Stress Analysis approach point to a normal fault stress regime in that interval. The fracture stability analysis indicated some critically stressed open fractures and microfaults, mostly towards the lower intervals of the well section. These critically stressed open fractures and microfaults present at these comparatively shallower depths of the basin point to risks associated with carbon dioxide(CO2) leakage and also to induced seismicity that might result from the injection of CO2 anywhere in or immediately below this interval.


2021 ◽  
Author(s):  
Ayman Al-Nakhli ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud

Abstract Unconventional and tight gas reservoirs are located in deep and competent formations, which requires massive fracturing activities to extract hydrocarbons. Some of the persisting challenges faced by operators are either canceled or non-productive fractures. Both challenges force oil companies to drill new substitutional wells, which will increase the development cost of such reservoirs. A novel fracturing method was developed based on thermochemical pressure pulse. Reactive material of exothermic components are used to generate in-situ pressure pulse, which is sufficient to create fractures. The reaction can vary from low pressure pulse, to a very high loading up to 20,000 psi, with short pressurization time. In this study, Finite Element Modeling (FEM) was used to investigate the impact of the generated pressure-pulse load, by chemical reaction, on the number of induced fractures and fracture length. Actual tests of pulsed fracturing conducted in lab scale using several block samples compared with modeling work. There was a great relationship between the pressure load and fracturing behavior. The greater the pulse load and pressurization rate, the greater the number of created fractures, and the longer the induced fractures. The developed novel fracturing method will increase stimulated reservoir volume of unconventional gas without introducing a lot of water to formation. Moreover, the new method can reduce formation breakdown pressure by around 70%, which will minimize number of canceled fracturing.


2021 ◽  
Author(s):  
Adnan Bin Asif ◽  
Mustafa Alaliwat ◽  
Jon Hansen ◽  
Mohamed Sheshtawy

Abstract The main objective of the acoustic logging in 15K openhole multistage fracturing completions (OH MSFs) is to identify the fracture initiation points behind pipe and contributing fractures to gas production. The technique will also help to understand the integrity of the OH packers. A well was identified to be a candidate for assessment through such technique. The selected well was one of the early 15K OH MSF completions in the region that was successfully implemented with the goal of hydrocarbon production at sustained commercial rates from a gas formation. The candidate well was drilled horizontally to achieve maximum contact in a tight gas sandstone formation. Similar wells in the region have seen many challenges of formation breakdown due to high formation stresses. The objective of this work is to use the acoustic data to better characterize fracture properties. The deployment of acoustic log technology can provide information of fractures initiation, contribution for the production and the reliability of the isolation packers between the stages. The candidate well was completed with five stages open-hole fracturing completion. As the well is in an open hole environment, a typical PLT survey provides the contribution of individual port in the cumulative production but provides limited or no information of contributing fractures behind the pipe. The technique of acoustic logging helped to determine the fracture initiation points in different stages. If fractures can be characterized more accurately, then flow paths and flow behaviors in the reservoir can be better delineated. The use of acoustic logging has helped to better understand the factors influencing fracture initiation in tight gas sandstone reservoirs; resulting in a better understanding of fractures density and decisions on future openhole length, number of fracturing stages, packers and frac ports placement.


2021 ◽  
Vol 14 (12) ◽  
pp. 1299
Author(s):  
Shinya Toriumi ◽  
Akinobu Kobayashi ◽  
Hitoshi Sueki ◽  
Munehiro Yamamoto ◽  
Yoshihiro Uesawa

Fractures occur when bones become fragile and are subjected to external forces as occurring during falls. The use of drugs that increase bone fragility or fall risk increases the risk of fracture. This study investigates drug-induced fractures reported in the Japanese Adverse Drug Event Report (JADER) database in patients using 4892 drugs. Atypical femur fracture was the most frequently reported fracture, and 58 other fractures were also reported. Using Volcano plots and multiple logistic regression analysis, we identified the risk factors for drug-induced fractures as being female, of older age, higher body mass index, and using one of 90 drugs. The drug groups significantly associated with drug-induced fractures included bone resorption inhibitors, antiviral drugs, dopaminergic drugs, corticosteroids, and sleep sedatives. Principal component analysis was used to examine the relationship between the use of specific drugs and the site of drug-induced fracture. Bone resorption inhibitors and corticosteroids were associated with atypical femur fractures, jaw fractures, and ulna fractures through an osteoclast-mediated process. Other drugs were found to increase fracture risk via non-osteoclast-mediated mechanisms. These findings suggest that many drugs can result in drug-induced fractures through a variety of mechanisms.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (12) ◽  
pp. 783-794
Author(s):  
Wiesław Szott ◽  
◽  
Krzysztof Miłek ◽  

The paper presents a numerical procedure of estimating the sequestration capacity of an underground geological structure as a potential sequestration site. The procedure adopts a reservoir simulation model of the structure and performs multiple simulation runs of the sequestration process on the model according to a pre-defined optimization scheme. It aims at finding the optimum injection schedule for existing and/or planned injection wells. Constraints to be met for identifying the sequestration capacity of the structure include a no-leakage operation for an elongated period of the sequestration performance that contains a relaxation phase in addition to the injection one. The leakage risk analysis includes three basic leakage pathways: leakage to the overburden of a storage formation, leakage beyond the structural trap boundary, leakage via induced fractures. The procedure is implemented as a dedicated script of the broadly used Petrel package and tested on an example of a synthetic geologic structure. The script performs all the tasks of the procedure flowchart including: input data definitions, simulation model initialization, iteration loops control, simulation launching, simulation results processing and analysis. Results of the procedure are discussed in detail with focus put on various leakage mechanisms and their handling in the adopted scheme. The overall results of the proposed procedure seem to confirm its usefulness and effectiveness as a numerical tool to facilitate estimation of the sequestration capacity of an underground geological structure. In addition, by studying details of the procedure runs and its intermediate results, it may be also very useful for the estimation of various leakage risks.


2021 ◽  
Author(s):  
Mohamed Shamlooh ◽  
Ahmed Hamza ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser ◽  
Saeed Salehi

Abstract Lost circulation is one of the most common problems in the drilling of oil and gas wells where mud escapes through natural or induced fractures. Lost circulation can have severe consequences from increasing the operational cost to compromising the stability of wells. Recently, polymeric formulations have been introduced for wellbore strengthening purposes where it can serve as Loss Circulation Materials (LCMs) simultaneously. Polymeric LCMs have the potential to be mixed with drilling fluids during the operation without stopping to avoid non-productive time. In this study, the significance of most common conventional mud additives and their impact on the gelation performance of Polyacrylamide (PAM) / Polyethyleneimine (PEI) has been investigated. Drilling fluid with typical additives has been designed with a weight of 9.6 ppg. Additives including bentonite, barite, CarboxyMethylCellulose (CMC), lignite, caustic soda, desco, and calcium carbonate has been studied individually and combined. Each additive is mixed with the polymeric formulation (PAM 9% PEI 1%) with different ratios, then kept at 130°C for 24 hrs. Rheological performance of the mature gel has been tested using parallel plate geometry, Oscillatory tests have been used to assess the storage Modulus and loss modulus. Moreover, the gelation profile has been tested at 500 psi with a ramped temperature to mimic the reservoir conditions to obtain the gelation time. The gelation time of the polymer-based mud was controllable by the addition of a salt retarder (Ammonium Chloride), where a gelation time of more than 2 hours could be achieved at 130°C. Laboratory observations revealed that bentonite and CMC have the most effect as they both assist in producing stronger gel. While bentonite acts as a strengthening material, CMC increases the crosslinking network. Bentonite has successfully increased the gel strength by 15% providing a storage modulus of up to 1150 Pa without affecting the gelation time. This work helps in better understanding the process of using polymeric formulations in drilling activities. It provides insights to integrate gelling systems that are conventionally used for water shut-off during the drilling operation to replace the conventional loss circulation materials to provide a higher success rate.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6354
Author(s):  
Xulin Du ◽  
Linsong Cheng ◽  
Jun Chen ◽  
Jianchao Cai ◽  
Langyu Niu ◽  
...  

The mismatching between the multi-scale feature of complex fracture networks (CFNs) in unconventional reservoirs and their current numerical approaches is a conspicuous problem to be solved. In this paper, the CFNs are divided into hydraulic macro-fractures, induced fractures, and natural micro-fractures according to their mode of origin. A hybrid model coupling various numerical approaches is proposed to match the three-dimensional multi-scale fracture networks. The macro-fractures with high-conductivity and wide-aperture are explicitly characterized by a mimetic Green element method-based hierarchical fracture model. The induced fractures and natural micro-fractures that have features of low-conductivity and small-openings are upscaled to the dual-medium grid and enhanced matrix grid through the equivalent continuum-medium method, respectively. Subsequently, some benchmark cases are implemented to confirm the high-precision and high-robustness of the proposed hybrid model that indeed accomplishes accurate modeling of fluid flow in multi-scale CFNs by comparing with commercial software tNavigator®. Furthermore, an integrated workflow of simulation modeling for multiscale CFNs combined with a field example in Sichuan from China is used to analyzing the production information of fractured horizontal wells in shale gas reservoirs. Compared with the field production data from this typical well, it can be proved that the hybrid model has strong reliability and practicability.


2021 ◽  
Vol 861 (6) ◽  
pp. 062081
Author(s):  
Geng Tie ◽  
Bin Lin ◽  
Shuai Zhang ◽  
Kunkun Wu ◽  
Chengyun Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document