Fluctuating Time Quantum Round Robin (FTQRR) CPU Scheduling Algorithm

Author(s):  
Chhaya Gupta ◽  
Kirti Sharma
2017 ◽  
Vol 167 (13) ◽  
pp. 48-55 ◽  
Author(s):  
Yosef Berhanu ◽  
Abebe Alemu ◽  
Manish Kumar

Author(s):  
N. Srilatha ◽  
M. Sravani ◽  
Y. Divya

In Round Robin Scheduling the time quantum is fixed and then processes are scheduled such that no process get CPU time more than one time quantum in one go. The performance of Round robin CPU scheduling algorithm is entirely dependent on the time quantum selected. If time quantum is too large, the response time of the processes is too much which may not be tolerated in interactive environment. If time quantum is too small, it causes unnecessarily frequent context switch leading to more overheads resulting in less throughput. In this paper a method using Manhattan distance has been proposed that decides a quantum value. The computation of the time quantum value is done by the distance or difference between the highest burst time and lowest burst time. The experimental analysis also shows that this algorithm performs better than RR algorithm and by reducing number of context switches, reducing average waiting time and also the average turna round time.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 238 ◽  
Author(s):  
Govind Prasad Arya ◽  
Kumar Nilay ◽  
Devendra Prasad

The most important and integral part of a computer system is its operating system. Scheduling various resources is one of the most critical tasks an operating system needs to perform. Process scheduling being one of those tasks, involves various techniques that define how more than one processes can be executed simultaneously. The primary aim here is to the system more efficient and faster. The fundamental scheduling algorithms are: First Come First Serve (FCFS), Round Robin, Priority Based Scheduling, and Shortest Job First (SJF). This paper focuses on Round Robin Scheduling algorithm and various issues related to it. One major issue in RR scheduling is determining the length of Time Quantum. If the Time Quantum is too large RR scheduling behaves as FCFS. On the other hand, if it is too small it forces considerable increase in the number of context switches. Our main objective is to overcome this limitation of traditional RR scheduling algorithm and maximize CPU utilization, further, leading to more efficient and faster system. Here we propose an algorithm that categorizes available processes into High Priority processes and Low Priority process. The proposed algorithm reduces the average waiting time of High Priority processes in all cases and of Low Priority processes in not all but some cases. The overall waiting time changes on the basis of set of processes considered. The simulation results justify that the proposed schemes reduces the overall average waiting time when compared to the existing schemes. 


Sign in / Sign up

Export Citation Format

Share Document